DOI QR코드

DOI QR Code

Comparative Analysis of Crop Monitoring System Based on Remotely-Sensed Data

위성영상을 활용한 작황모니터링 시스템의 사례분석 연구

  • Lee, Jung-Bin (Department of Civil & Environmental Engineering, Yonsei University) ;
  • Nguyen, Hieu Cong (Department of Civil & Environmental Engineering, Yonsei University) ;
  • Kim, Jeong-Hyun (Department of Civil & Environmental Engineering, Yonsei University) ;
  • Hong, Suk-Young (Climate Change & Agro-Ecology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Heo, Joon (Department of Civil & Environmental Engineering, Yonsei University)
  • 이정빈 (연세대학교 토목환경공학과) ;
  • 우엔 콩 효 (연세대학교 토목환경공학과) ;
  • 김정현 (연세대학교 토목환경공학과) ;
  • 홍석영 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 허준 (연세대학교 토목환경공학과)
  • Received : 2014.09.29
  • Accepted : 2014.10.18
  • Published : 2014.10.31

Abstract

Now global climate change is changing environmental factors, such as temperature and precipitation, which have a great effect on crop yields. Accordingly, crop yield forecast is becoming more important to global food supplies and sustainable development of rural areas. Worldwide, many countries, such as USA, China, Canada, and institutions, such as FAO, USDA, NASA, maintain the cooperative relationship to operate the crop monitoring system at both the national and global scale. This paper aims to investigate the current developments of crop monitoring systems in terms of information level, remotely-sensed data, and biophysical parameters, and to propose the direction of the advanced corp monitoring system based on remote sensing.

최근 기후변화로 인하여 농작물 생산에 영향을 주는 기온, 강수량 등 환경요인의 변화가 급격하게 진행되고 있다. 이에 따른 농작물에 대한 생산량 예측은 전세계적인 식량 안보 문제의 해결, 국가차원의 농작물 수급정책 결정, 농가단위의 농가 소득 보전 등 지속가능한 농업경제 발전을 위한 중요한 요소가 되고 있다. 미국, 유럽, 중국, 캐나다, FAO, USDA, NASA 등 여러 국가들 및 기관들은 협력체계를 구축하여 넓게는 전세계 단위에서 국가단위까지 작물 모니터링 시스템을 운영하고 있다. 본 연구에서는 다양한 스케일로 운영되고 있는 국외 작황모니터링 시스템의 전반적인 현황을 파악하고 제공되고 있는 정보의 수준, 활용되고 있는 위성영상, 기후, 토양 습도 등 다양한 생물리변수의 활용 여부를 판단하여 향후 위성영상을 활용한 작황모니터링 시스템의 발전방향을 제시하고자 한다.

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. Asia-RiCE, http://asia-rice.org/index.php/.
  2. Atzberger, C., 2013, Advances in remote sensing of agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs, Remote Sensing, 5(2): 949-981. https://doi.org/10.3390/rs5020949
  3. Becker-Reshef, I., C.O. Justice, M. Sullivan, E.F. Vermote, C. Tucker, A. Anyamba, J. Small, E. Pak, E. Masuoka, and J. Schmaltz, 2010, Monitoring global croplands with coarse resolution Earth observation: The Global Agriculture Monitoring (GLAM) project, Remote Sensing, 2(6): 1589-1609. https://doi.org/10.3390/rs2061589
  4. CCAP, http://www.agr.gc.ca/eng/?id=1326402878459.
  5. CGIAR, 2007, Global Agricultural Monitoring in the CGIAR, http://www.cgiar-csi.org/; https://www.earthobservations.org/documents/cop/ag_gams/200707_01/ag_monitoring_cgiar.pdf.
  6. CHARMS, http://www.caas.cn/en/.
  7. CONAB, http://www.conab.gov.br/.
  8. Crop Explorer, http://www.pecad.fas.usda.gov/cropexplorer/.
  9. Crop Monitor, http://www.geoglam-crop-monitor.org/.
  10. CropWatch, http://www.cropwatch.com.cn/htm/en/index.shtml.
  11. CSIRO, AussieGRASS, http://www.longpaddock.qld.gov.au/AboutUs/ResearchProjects/AussieGRASS/Project/.
  12. CSIRO, Climate and Agriculture Update, http://www.daff.gov.au/brs/climate-impact/climateagricultural-update.
  13. CSIRO, Collaborative Land Use Mapping Programme, http://adl.brs.gov.au/mapserv/landuse/.
  14. CSIRO, LANDMONITOR, http://www.landmonitor.wa.gov.au.
  15. CSIRO, Pastures from Space, http://www.pasturesfromspace.csiro.au.
  16. CSIRO, Yield Prophet, http://www.yieldprophet.com.au.
  17. DAFF, http://www.daff.gov.za.
  18. FASAL, http://www.isro.org/scripts/rsa_fasal.aspx.
  19. FEWS NET, http://www.fews.net/, http://earlywarning.usgs.gov/fews/.
  20. FIVIMS, http://www.fao.org/docrep/meeting/W8500e.htm.
  21. GIEWS, http://www.fao.org/giews/english/index.htm.
  22. GMFS, http://www.gmfs.info/uk/index.html.
  23. IWMI, http://www.iwmigiam.org/info/main/index.asp.
  24. JRC MARS, http://mars.jrc.ec.europa.eu/.
  25. MinAgri, http://www.minagri.gob.ar/site/.
  26. Naoki, M., 2005, The application of geospatial and disaster information for food insecurity and agricultural drought monitoring and assessment by the FAO GIEWS and Asia FIVIMS, Workshop on Reducing Food Insecurity Associated with Natural Disasters in Asia and the Pacific, Bangkok, Thailand, Jan 27-28.
  27. NASS, http://www.nass.usda.gov/.
  28. NCRST, 2010, Development Of Earth Observation Technologies In Kazakhstan, https://www.aprsaf.org/data/aprsaf16_data/Day-_eo_1450_EO_CR_Kazakhstan.pdf.
  29. RRSU, http://www.sadc.int.
  30. SIGMA project, http://www.geoglam-sigma.info/.
  31. Tilman, D., C. Balzer, J. Hill, and B.L. Befort, 2011, Global food demand and the sustainable intensification of agriculture, Proceeding of National Academy of Science of the United States of America, 108(50): 20260-20264. https://doi.org/10.1073/pnas.1116437108
  32. VAM, http://foodprices.vam.wfp.org/default2.aspx.
  33. Wu, B., J. Meng, Q. Li, N. Yan, X. Dua, and M. Zhang, 2014, Remote sensing-based global crop monitoring: experiences with China's CropWatch system, International Journal of Digital Earth, 7(2): 113-137. https://doi.org/10.1080/17538947.2013.821185
  34. Xiong. D., 2014, Crop Growth Remote Sensing Monitoring and its Application, Sensors & Transducers, 169(4): 174-178.

Cited by

  1. Analysis of Payload Technical Specifications for Efficient Agriculture and Forestry Satellite Observation vol.32, pp.3, 2016, https://doi.org/10.7780/kjrs.2016.32.3.8
  2. Application of Highland Kimchi Cabbage Status Map for Growth Monitoring based on Unmanned Aerial Vehicle vol.49, pp.5, 2016, https://doi.org/10.7745/KJSSF.2016.49.5.469