DOI QR코드

DOI QR Code

Electricity Demand Forecasting for Daily Peak Load with Seasonality and Temperature Effects

계절성과 온도를 고려한 일별 최대 전력 수요 예측 연구

  • Jung, Sang-Wook (Department of Applied Statistics, Chung-Ang University) ;
  • Kim, Sahm (Department of Applied Statistics, Chung-Ang University)
  • 정상욱 (중앙대학교 응용통계학과) ;
  • 김삼용 (중앙대학교 응용통계학과)
  • Received : 2014.10.06
  • Accepted : 2014.10.07
  • Published : 2014.10.31

Abstract

Accurate electricity demand forecasting for daily peak load is essential for management and planning at electrical facilities. In this paper, we rst, introduce the several time series models that forecast daily peak load and compare the forecasting performance of the models based on Mean Absolute Percentage Error(MAPE). The results show that the Reg-AR-GARCH model outperforms other competing models that consider Cooling Degree Day(CDD) and Heating Degree Day(HDD) as well as seasonal components.

급증하고 있는 전력수요에 대한 신뢰성 있는 예측은 합리적인 전력수급계획 수립 및 운용에 있어서 매우 중대한 사안이다. 본 논문에서는 여러 시계열 모형의 비교를 통해 전력수요량과 밀접한 연관성이 있는 온도를 어떠한 형태로 고려할 것인지, 또한 4계절이 뚜렷하여 계절별 기온 차가 많이 나는 우리나라의 특성을 어떻게 고려할 것인지에 대하여 연구하였다. 모형 간 예측력을 비교하기 위하여 Mean Absolute Percentage Error(MAPE)를 사용하였다. 모형의 성능비교 결과는 냉 난방지수와 계절요인을 동시에 고려하면서 큰 변동성을 잘 고려해줄 수 있는 Reg-AR GARCH 모형이 가장 우수한 예측력을 나타냈다.

Keywords

References

  1. Amjady, N. (2001). Short-term hourly load forecasting using time-series modeling with peak load estimation capability, IEEE Transactions on Power Systems, 16, 498-505.
  2. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
  3. Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1994). Time series analysis: forecasting and control, Princeton-Hall International.
  4. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom in ation, Econometrica: Journal of the Econometric Society, 50, 987-1007. https://doi.org/10.2307/1912773
  5. Fan, S. and Hyndman, R. J. (2012). Short-term load forecasting based on a semi-parametric additive model, IEEE Transactions on Power Systems, 27, 134-140. https://doi.org/10.1109/TPWRS.2011.2162082
  6. Huang, S. J. and Shih, K. R. (2003). Short-term load forecasting via ARMA model identi cation including non-Gaussian process considerations, IEEE Transactions on Power Systems, 18, 673-679. https://doi.org/10.1109/TPWRS.2003.811010
  7. Lee, J. S., Sohn, H. G. and Kim, S. (2013). Daily peak load forecasting for electricity demand by time series models, The Korean Journal of Applied Statistics, 26, 349-360. https://doi.org/10.5351/KJAS.2013.26.2.349
  8. Sigauke, C. and Chikobvu, D. (2011). Prediction of daily peak electricity demand in South Africa using volatility forecasting models, Energy Economics, 33, 882-888. https://doi.org/10.1016/j.eneco.2011.02.013
  9. Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal exponential smoothing, Journal of the Operational Research Society, 54, 799-805. https://doi.org/10.1057/palgrave.jors.2601589

Cited by

  1. Functional clustering for electricity demand data: A case study vol.26, pp.4, 2015, https://doi.org/10.7465/jkdi.2015.26.4.885
  2. A Study on the Suitability of Load Demand Forecasting Models for Island Area Using Weather Variables vol.13, pp.2, 2017, https://doi.org/10.7849/ksnre.2017.6.13.2.084
  3. The effect of temperature on the electricity demand: An empirical investigation vol.24, pp.2, 2015, https://doi.org/10.5855/ENERGY.2015.24.2.167
  4. A study on electricity demand forecasting based on time series clustering in smart grid vol.29, pp.1, 2016, https://doi.org/10.5351/KJAS.2016.29.1.193