DOI QR코드

DOI QR Code

다변량 왜정규분포 기반 선형결합통계량에 대한 안장점근사

Saddlepoint Approximation to the Linear Combination Based on Multivariate Skew-normal Distribution

  • Na, Jonghwa (Department of Information & Statistics, Chungbuk National University)
  • 투고 : 2014.08.19
  • 심사 : 2014.10.10
  • 발행 : 2014.10.31

초록

다변량 왜정규분포는 다변량 정규분포를 포함하는 분포로 최근 많은 응용분야에서 활용되고 있다. 본 논문에서는 다변량 왜정규분포를 기반으로 하는 선형결합통계량의 분포함수에 대한 안장점근사를 다루었다. 이는 단변량 왜정규분포 기반 표본평균에 대한 Na와 Yu (2013)의 결과를 선형결합 및 다변량의 경우로 확장한 것이다. 모의실험과 실제자료분석을 통해 제안된 근사법의 유용성과 정확도를 확인하였다.

Multivariate skew-normal distribution(distribution that includes multivariate normal distribution) has been recently applied to many application areas. We consider saddlepoint approximation for a statistic of linear combination based on a multivariate skew-normal distribution. This approach can be regarded as an extension of Na and Yu (2013) that dealt saddlepoint approximation for the distribution of a skew-normal sample mean for a linear statistic and multivariate version. Simulations results and examples with real data verify the accuracy and applicability of suggested approximations.

키워드

참고문헌

  1. Azzalini, A. (1985). A class of distributions which includes the normal ones, Scandinavian Journal of Statistics, 12, 171-178.
  2. Azzalini, A. (1986). Further results on a class of distributions which includes the normal ones, Statistica, 46, 199-208.
  3. Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution, Biometrika, 83, 715-726. https://doi.org/10.1093/biomet/83.4.715
  4. Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew normal distributions, Journal of the Royal Statistical Society, Series B, 61, 579-602. https://doi.org/10.1111/1467-9868.00194
  5. Azzalini, A. (2005). The skew-normal distribution and related multivariate families (with discussion), Scandinavian Journal of Statistics, 32, 159-188. https://doi.org/10.1111/j.1467-9469.2005.00426.x
  6. Daniels, H. E. (1954). Saddlepoint approximations in statistics, The Annals of Mathematical Statistics, 25, 631-650. https://doi.org/10.1214/aoms/1177728652
  7. Daniels, H. E. (1987). Tail probability approximations, International Statistical Review, 55, 37-48. https://doi.org/10.2307/1403269
  8. Gupta, R. C. and Brown, N. (2001). Reliability studies of the skew-normal distribution and its application to a strength-stress model, Communications in Statistics-Theory and Methods, 30, 2427-2445. https://doi.org/10.1081/STA-100107696
  9. Lugannani, R. and Rice, S. (1980). Saddlepoint approximation for the distribution of the sum of independent random variables, Advanced Applied Probability, 12, 475-490. https://doi.org/10.2307/1426607
  10. Na, J. H. (2008). Saddlepoint approximation to quadratic form and application to intraclass correlation coefficient, Journal of the Korean Data & Information Science Society, 19, 497-504.
  11. Na, J. H. and Yu, H. K. (2013). Saddlepoint approximation for distribution function of sample mean of skew-normal distribution, Journal of the Korean Data & information Science Society, 24, 1211-1219. https://doi.org/10.7465/jkdi.2013.24.6.1211
  12. Roberts, C. (1966). A correlation model useful in the study of twins, Journal of the American Statistical Association, 61, 1184-1190. https://doi.org/10.1080/01621459.1966.10482202

피인용 문헌

  1. Saddlepoint approximation to the distribution function of quadratic forms based on multivariate skew-normal distribution vol.29, pp.4, 2016, https://doi.org/10.5351/KJAS.2016.29.4.571