DOI QR코드

DOI QR Code

Reanalysis of 2002 Donation Frequency Data: Corrections and Supplements

2002년 기부횟수 자료의 재분석: 수정 및 보완

  • Kim, Byung Soo (Department of Applied Statistics, Yonsei University) ;
  • Lee, Juhyung (Department of Applied Statistics, Yonsei University) ;
  • Kim, Inyoung (Department of Statistics, Virginia Tech) ;
  • Park, Su-Bum (Gender Budget Research Center, Korea Women's Development Institute) ;
  • Park, Tae-Kyu (Department of Economics, Yonsei University)
  • Received : 2014.07.29
  • Accepted : 2014.09.30
  • Published : 2014.10.31

Abstract

Kim et al. (2006) and Kim et al. (2009) reported a set of explanatory variables affecting donation frequency when they analyzed nationwide survey data on donations collected in 2002 by Volunteer 21, a nonprofit organization in Korea. The primary purpose of this paper is to correct computational errors found in Kim et al. (2006) and Kim et al. (2009), to rectify major results in the Tables and Figures and to supplement Kim et al. (2009) by providing new results. We add two logistic regressions to the ZIP and a mixture of two Poisson regressions of Kim et al. (2009). Through these two logistic regressions we could detect a set of explanatory variables affecting donation activity (0 or 1) and another set of explanatory variables, in which the volunteer (0, 1) variable is common, discriminating the infrequent donor group from the frequent donor group.

Kim 등 (2006)과 Kim 등 (2009)은 2002년에 (사)볼런티어 21에서 조사한 설문자료에 기초하여 우리나라 개인의 기부횟수에 영향을 주는 유의적 설명변수를 보고한 바 있다. 본고에서는 Kim 등 (2006)과 Kim 등 (2009)의 계산오류를 발견하여 이를 수정하고, 아울러 Kim 등 (2009)이 적용한 0이 팽창된 포아송 모형에 로지스틱 회귀모형을 추가하였다. 동 로지스틱 모형으로 기부행위(0, 1)에 영향을 주는 설명변수를 식별하고, 아울러 기부횟수가 작은 군(群)과 큰 군(群)을 판별하여 주는 설명변수를 식별하고자 한다.

Keywords

References

  1. Dempster, A. P., Larid, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion), Journal of the Royal Statistical Society: Series B, 39, 1-38.
  2. Hurvich, C. M. and Tsai, C. L. (1989). Regression and time series model selection in small samples, Biometrika, 76, 297-307. https://doi.org/10.1093/biomet/76.2.297
  3. Kim, I., Park, S. B., Kim, B. S. and Park, T. K. (2006). The analysis of the number of donations based on a mixture of Poisson regression model, The Korean Journal of Applied Statistics, 19, 1-12. https://doi.org/10.5351/KJAS.2006.19.1.001
  4. Kim, I., Park, T. K. and Kim, B. S. (2009). The reanalysis of the donation data using the zero-inflated Poisson regression, The Korean Journal of Applied Statistics, 22, 819-827. https://doi.org/10.5351/KJAS.2009.22.4.819
  5. Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing, Technometrics, 34, 1-14. https://doi.org/10.2307/1269547
  6. McLachlan, G. J. and Krishnan, T. (1997). The EM Algorithm and Extensions, New York: Wiley.
  7. Morgan, B. J. T. (1992). Analysis of Quantal Response Data, New York: Chapman & Hall.
  8. Park, T. K. and Park, S. B. (2004). An economic study on charitable giving of individuals in Korea: Some new findings from 2002 survey data, presented at 6th conference of ISTR, Toronto, Canada.
  9. Son, W. and Park, T. K. (2008). A Study on Private Donation in Korea, Seoul: Korea Institute of Public Finance.