DOI QR코드

DOI QR Code

Modeling of Metabolic Syndrome Using Bayesian Network

베이지안 네트워크를 이용한 대사증후군 모델링

  • Jin, Mi-Hyun (Samsung Changwon Hospital, Sungkyunkwan University) ;
  • Kim, Hyun-Ji (Department of Statistics, Yeungnam University) ;
  • Lee, Jea-Young (Department of Statistics, Yeungnam University)
  • Received : 2014.07.03
  • Accepted : 2014.10.06
  • Published : 2014.10.31

Abstract

Metabolic syndrome is a major factor for cardiovascular disease that can develop into a variety of complications such as stroke disease. This study utilizes a Bayesian network to model metabolic syndrome. In addition, we tried to find the best risk combinations to diagnose metabolic syndrome. We confirmed that the combinations are difference according to individual characteristics. The paper used data from 4,489 adults who responded to all health interview questions from the the $5^{th}$ Korea National Health and Nutrition Examination Survey conducted in 2010.

대사증후군은 뇌졸중이나 심혈관 질환 등 다양한 합병증으로 발전될 수 있어 그 심각성이 커지고 있으며, 우리나라의 유병률이 증가하는 추세를 보이고 있어 연구의 필요성이 강조되고 있다. 본 연구는 베이지안 네트워크를 활용하여 대사증후군과 그 진단기준이 되는 5가지 이상 징후인 복부비만, 고중성지방혈증, 고혈압, 저 HDL 콜레스테롤혈증, 고혈당의 관계에 대한 모델을 구축 하고자 하였다. 추가적으로 대사증후군의 가장 위험한 진단조합을 선별하였고, 개개인의 특성에 따라 대사증후군의 특징도 다르게 나타난다는 것을 확인하였다. 사용된 데이터는 제5기 국민건강영양조사 중 2010년 자료로써 건강설문조사의 모든 문항에 응답한 성인 4,489명의 데이터이다.

Keywords

References

  1. Ban, S. M., Lee, K. J. and Yang, J. O. (2012). The effect of participation in a combined exercise program on the metabolic syndrome indices and physical fitness in the obese middle-aged women, Journal of the Korean Data & Information Science Society, 23, 703-715. https://doi.org/10.7465/jkdi.2012.23.4.703
  2. Brussels (2006). The IDF Consensus Worldwide Definition of the Metabolic Syndrome, IDF Communication, Belgium, 1-24.
  3. Cho, Y. C., Kwon, I. S., Park, J. Y. and Shin, M. W. (2012). Prevalence of metabolic syndrome and its associated factors among health checkup examines in a university hospital, Journal of the Korea Academia-Industrial Cooperation Society, 13, 5317-5325. https://doi.org/10.5762/KAIS.2012.13.11.5317
  4. Consultation, W. (1999). Deffinition, Diagnosis and Classification of Diabetes Mellitus and Its Complications, World Health Organization Department of Noncommunicable Disease Surveillance Geneva.
  5. Ford, E. S., Giles, W. H. and Dietz, W. H. (2002). Prevalence of the metabolic syndrome among US adults, The Journal of the American Medical Association, 287, 356-359. https://doi.org/10.1001/jama.287.3.356
  6. Han, J. M., Lee, K. J. and Yang, K. O. (2012). The effects of the 16-weeks combined exercise program on metabolic syndrome and autonomic nerve system of low-level physical strength group, Journal of the Korean Data & Information Science Society, 23, 787-796. https://doi.org/10.7465/jkdi.2012.23.4.787
  7. Heckerman, D. (1997). Bayesian Networks for Data Mining, Kluwer Academic Publishers, London.
  8. Jung, C. H., Park, J. S., Lee, W. Y. and Kim, S. W. (2002). Effects of smoking, alcohol, exercise, level of education, and family history on the metabolic syndrome in Korean adults, Korean Journal of Medicine, 63, 649-659.
  9. Kim, M. K. and Park, J. H. (2012). Metabolic syndrome, Journal of the Korean Medical Association, 55, 1005-1013. https://doi.org/10.5124/jkma.2012.55.10.1005
  10. Korea Centers for Disease Control and Prevention (2008). The third Korea National Health and Nutrition Examination Survey(KNHANES 3), Ministry of Health, Welfare and Family Affairs, Seoul.
  11. Korea Centers for Disease Control and Prevention (2010). The fifth Korea National Health and Nutrition Examination Survey(KNHANES 5-1), Ministry of Health, Welfare and Family Affairs, Seoul.
  12. Park, H. S., Oh, S. W., Cho, S. I., Choi, W. H. and Kim, Y. S. (2004). The metabolic syndrome and associated lifestyle factors among South Korean adults, International Journal of Epidemiology, 22, 328-336.
  13. Reaven, G. M. (1988). Diabetes, Role of Insulin Resistance in Human Disease, 37, 1595-1607.
  14. Tan, P., Steinbach, M. and Kumar, V. (2006). Introduction to Data Mining, Addison Wesley Longman, California.
  15. Yoo, J. S., Jung, J. I., Park, C. G., Kang, S. W. and Ahn, J. A. (2009). Impact of life style characteristics on prevalence risk of metabolic syndrome, Journal of Korean Academy of Nursing, 39, 594-601. https://doi.org/10.4040/jkan.2009.39.4.594