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블라인드 등화를 위한 상수 모듈러스 오차의 영-확률 추정 방법

Estimation of Zero-Error Probability of Constant Modulus Errors for 
Blind Equalization

김 남 용1*1

Namyong Kim

요    약

상수 모듈러스 오차가 영이 될 확률을 최대화하도록 설계된 블라인드 등화 알고리듬은 한 반복시간에서 합산과정을 수행하여 큰 

복잡성을 유발한다. 합산과정에서 생기는 이러한 계산상의 부담을 줄여보고자 상수 모듈러스 오차 (CME)의 영확률(ZEP)과 그것의 기

울기를 추정하는 새로운 접근 방법을 이 논문에서 제안하였다.  다음 반복시간에서 CME의 ZEP는 현행 CME의 ZEP를 기반으로 하여 
반복적으로 계산될 수 있음을 보였다. 알고리듬의 가중치 계산을 위한 기울기도 반복적 추정 방법에 의해 구해진 CME의 ZEP를 미분

하여 구해질 수 있음을 제시하였다. 시뮬레이션에서 기존의 블록 처리에 의해 구하던 방법과 비교하였을 때, 제안한 방법에 의해 구

해진 CME의 ZEP와 기울기가 상당히 줄인 계산량에도 불구하고 완전히 동일한 추정 결과를 보였다. 

☞ 주제어 : 상수 모듈러스 오차; 계산복잡도; 기울기; 충격성 잡음; 영확률. 

ABSTRACT

Blind algorithms designed to maximize the probability that constant modulus errors become zero carry out some summation 

operations for a set of constant modulus errors at an iteration time inducing heavy complexity. For the purpose of reducing this 

computational burden induced from the summation, a new approach to the estimation of the zero-error probability (ZEP) of constant 

modulus errors (CME) and its gradient is proposed in this paper. The ZEP of CME at the next iteration time is shown to be calculated 

recursively based on the currently calculated ZEP of CME. It also is shown that the gradient for the weight update of the algorithm 

can be obtained by differentiating the ZEP of CME estimated recursively. From the simulation results that the proposed estimation 

method of ZEP-CME and its gradient produces exactly the same estimation results with a significantly reduced computational complexity 

as the block-processing method does.

☞ keyword : Constant modulus error; Computational Complexity; Gradient; Impulsive noise; Zero-error probability.

1. INTRODUCTION

In the blind signal processing applications to broadcast 

and the wireless/mobile networks, a training data set is not 

available [1][2][3]. For blind equalization the constant 

modulus error (CME) is widely utilized that is defined the 

difference between the instant output power and a constant 

modulus predefined according to the modulation schemes 

[4]. The most commonly used constant modulus algorithm 

(CMA) for blind equalization is based on mean squared 
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error (MSE) criterion and minimize the average of the 

constant modulus error. The averaging operation of the MSE 

criterion can mitigate the influence of Gaussian noise on the 

algorithm. 

However, many communication systems are interfered 

with not only Gaussian noise but also impulsive noise from 

a variety of impulse noise sources [5][6]. Impulsive noise 

induces large instantaneous system output and error which 

often makes the system fail. 

In impulsive noise environment the CMA based on MSE 

criterion is revealed to fail. Instead of the MSE criterion that 

utilizes error energy, the correntropy concept has been 

proposed as one of the information-theoretic learning (ITL) 

method to cope with impulsive noise problems [7][8]. The 

correntropy blind method known to be effective in 
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correlative signaling systems has shown dissatisfying 

performance in the communication systems employing the 

identical, independently distributed symbol points. 

In our previous work [9], as an alternative to the 

correntropy algorithm that is well known for robustness to 

impulsive noise, a new blind algorithm designed to 

maximize the zero-error probability for CME (ZEP-CME) 

has been proposed to cope with impulsive noise problem as 

well as channel distortions. The algorithm based on 

ZEP-CME has shown superior performance in ISI and 

impulsive noise environments, but it has one drawback of 

requiring heavy computations due to some summation 

operations at each iteration time, and that problem hinders 

the efficient implementation of the algorithm.  

In this paper, for the purpose of reducing the computational 

complexity, a recursive approach to the ZEP-CME estimation 

and its gradient calculation for the weight update of the 

blind algorithm is proposed by investigating how the 

computation of ZEP-CME is done and whether any simpler 

methods can be possible based on the analysis. And then it 

is experimented whether the proposed method of recursive 

estimation of the ZEP-CME and its gradient produces the 

same equalization performance having no summation operations, 

compared to the original method introduced in [9].

This paper is organized as follows. Section 2 presents the 

definition of MSE and ZEP-CME. The ZEP-CME is shown 

to be able to be estimated recursively in Section 3, and the 

recursive estimation of the gradient of the ZEP-CME for the 

weight update is introduced in Section 4. Section 5 presents 

simulation results and discussions. Finally, concluding 

remarks are given in Section 6.  

2. MSE AND ZERO-ERROR 

PROBABILITY OF CONSTANT 

MODULUS ERRORS

The MSE criterion CMEP  for constant modulus error  

kCMEe ,  at time k has been employed in many blind 

equalization algorithms as 

2
2
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where ][/][ 24
2 ii dEdER = and { }id is a set of symbol 

points predefined for modulation. By taking the instant 

power of CME 
2

,kCMECME eP = and minimizing it with 

respect to weight, the well-known CMA algorithm is derived 

[4]. While the ensemble averaging operation in (2) or time 

averaging (3) can mitigate the influence of the Gaussian 

noise, even a single large impulse in impulsive noise 

environments can defeat the averaging causing equalizers 

employing the MSE criterion to be unstable. 

On the other hand, the ZEP-CME criterion for blind 

algorithms have been shown to be well adequate in 

impulsive noise channels since the Gaussian kernel 

embedded in the criterion has the effect of reducing the 

contribution of outlying samples that are located far away 

from zero [9]. This characteristic makes algorithms based on 

the ZEP-CME criterion insensitive to large errors induced 

mostly from impulsive noise. 

The probability density function for CME )( CMEE ef  can 

be constructed by the kernel density estimation method 

where outliers can be cut out by the Gaussian kernel [10]. 
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The zero-error probability of CME is obtained by letting 

CMEe  be zero as  

∑
+−=

==
k
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N
ef
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2
, )(1)0( σ

  (5)

The criterion of ZEP-CME (5) retains the Gaussian 

function of 2
2

, Rye iiCME −=  so that output samples where 

the instant output power
2

iy is much greater than 2R are cut 

out. Usually the large instant output power comes from 

impulsive noise. This implies that blind algorithms designed 
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based on maximizing the criterion ZEP-CME can be stable 

contrary to the MSE-based cost function (2) or (3) [9].

One of the basic ideas of the ITL method is that data 

samples can be considered as physical particles in physics. 

That is, the CME sample iCMEe ,  in (5) is considered as 

information particles placed at the locations of iCMEe , . The 

Gaussian kernel )( 2
,iCMEeGσ  has an exponential decay with 

the distance between the particle 
2

,iCMEe and the particle 

located at zero. This leads us to consider the Gaussian 

kernel as a potential field inducing interaction among the 

information particles. The right term ∑
+−=

k

Nki
iCMEeG

N 1

2
, )(1

σ in 

(5) is corresponding to the sum of interactions on the 

particle
2

,iCMEe . The inequality ∑∑
+−=+−=

<
k

Nki

k
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iCME G

N
eG
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, )0(1)(1

σσ

indicates that maximization of ZEP-CME (MZEP-CME) 

leads to the result that all )( 2
,iCMEeGσ  become )0(σG , that is, 

all CME samples concentrate on zero. Therefore, blind 

algorithms designed on the MZEP-CME can have the 

capability of cancelling ISI as well as the immunity to 

impulsive noise. 

One drawback of the criterion ZEP-CME can be the 

computational burden from the summation operations in (5) 

at each iteration time. This burden hinders the efficient 

implementation of blind equalizers based on the criterion 

ZEP-CME. In the following section, a method of reducing 

the computational complexity significantly by investigating 

how the computation of ZEP-CME, that is, the sum of 

interactions ∑
+−=

k

Nki
iCMEeG

N 1

2
, )(1

σ is done and whether any 

simpler methods can be possible based on the analysis.   

3. PROPOSED ESTIMATION 

METHOD OF ZEP-CME   

According to the concept of information particle, the 

ZEP-CME (5) can be regarded as the sum of interactions 

among a block data of N  squared CME samples

{ }2
1,

2
1,

2
, ,...,, +−− NkCMEkCMEkCME eee . When a new squared CME 

sample 
2

1, +kCMEe  comes into the data block at time k+1, the 

data block becomes { }2
2,

2
2,

2
1, ,...,, +−++ NkCMEkCMEkCME eee , and the 

sum of interactions is renewed by computing and summing 

all interactions among the squared CME samples. It is 

observed that the old squared CME sample 
2

1, +−NkCMEe

leaves the data block as the new squared CME sample 
2

1, +kCMEe comes into it. This indicates that the interactions 

between 
2

1, +−NkCMEe and the other squared CME samples are 

discarded while the new interactions between 
2

1, +kCMEe and 

the others are added to the sum. It is noticeable that each 

new ZEP-CME at time k+1 might be calculated just by 

adding new interactions related with 
2

1, +kCMEe to the current 

sum, and subtracting old interactions related with 

2
1, +−NkCMEe from the current sum. This points out that a 

simpler method for ZEP-CME calculation can be possible 

than the block processing method in (5). 

Since the data block for the summation is not filled full 

in the initial state Nk ≤≤1 , two cases will be discussed 

separately as the kCME
I
E ef )0( =  is for the initial state and 

kCME
S
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In the steady state,
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The equations (8) for the initial state shows that the next 

ZEP-CME 1
)0(

+
=

kCME
I
E ef  can be calculated with the 

squared CME 
2

1, +kCMEe  and the current ZEP-CME

kCME
I
E ef )0( = . The equation (9) indicates that in the steady 

state, ZEP-CME at the next iteration time k+1 can be 

estimated recursively with the current ZEP-CME and a 

combination of interactions related with the newly coming 

squared CME and the discarded one. Furthermore, this 

recursive estimation of ZEP-CME contains no summation 

operations at all, contrary to the block-processing method of 

ZEP-CME (5). 

4. GRADIENT OF ZEP-CME FOR 

BLIND EQUALIZATION  

Assuming the structure of tapped delay line (TDL) with 

L weights is employed, the output ky at time k with the 

input vector kX
T

Lkkk xxx ],...,,[ 11 +−−= and equalizer weight 

vector kW
T

kLkk www ],...,,[ ,1,1,0 −= can be k
T
kky XW= . Blind 

algorithms designed based on the performance criterion 

ZEP-CME can be derived from the MZEP-CME with 

respect to the equalizer weights, in which the gradient of the 

criterion and the steepest ascent method are used. 
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where μ  is the step-size for convergence control. 

When we utilize the block processing method (5), the 

following MZEP-CME algorithm can be obtained. 
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On the other hand, it can be inferred that the gradient at 

time k+1 W∂
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 might also be calculated by 

differentiating the ZEP-CME in (8) and (9) instead of (5).
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On the other hand, the gradient in the steady state 
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With (12) and (13), the weight update operation in (10) 

is now carried out recursively. As opposed to the 

block-processed gradient (11) having a summation operation, 

the recursive equations (12) and (13) show that they have no 

summations. That is, the recursive gradient estimation can 

significantly reduce its computational complexity.   

The computational complexity analysis could be carried 

out in the aspects of time complexity and number of 

operations (usually multiplications), but in this paper the 

number of operations is analyzed according to conventional 

complexity analysis in the research field of equalization 

[11][12]. 

For the sake of convenience and comparison, we consider 

the common term )(2 2
,2 iCMEeG

N σσ in (11) as a constant. Then 

the number of multiplications for the conventional gradient 

estimation of (11) is N4 . Similarly, defining )(2 2
1,2 +kCMEeG

N σσ

and )(2 2
1,2 +−NkCMEeG

N σσ  in (13) as a constant 2C  and 3C , 

respectively, the number of multiplications for the proposed 

estimation of (13) becomes 6. The comparison of 

multiplication operations with respect to the data block size 

N is described in Fig. 1. It is noticeable that the number of 

multiplications of the conventional method increases linearly 

proportional to the data block size N  while that of the 

proposed estimation remains as a constant 6 being 

independent of the data block sizeN . When 30=N  which 

will be used in the simulation, the complexity ratio of the 

conventional method to the proposed estimation is 20:1. 
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Fig. 1. Comparison of the number of multiplications 

for the data block size N.

5. SIMULATION RESULTS AND DISCUSSION

In this section, it will be investigated whether the 

proposed estimation of ZEP-CME yields the same estimation 

results as the block-processed ZEP-CME estimation method. 

Also the recursively estimated gradient of ZEP-CME for the 

weight update will be shown to have equal results to that of 

the block-processing method.  

We use the same blind equalization environment as in 

[9]. The parameters for the simulation are the same too as 

the data-block size 30=N , the convergence parameter

02.0=μ , and the kernel size is set to be 6=σ . In Fig. 2, 

the trace of ZEP-CME is described for the two methods; the 

block-processing method by (5), and the recursive estimation 

by (8) and (9). The probability ZEP-CME decreases rapidly 

with iterations as the algorithm (11) designed to maximize 

the ZEP-CME converges. The ZEP-CME converges at about 

iteration number 3000 complying exactly with the MSE 

convergence result appeared in [9]. However, in Fig. 3 

focused in the initial part of iteration )301( =<≤ Nk , a 

slight difference is observed that initially the two methods 

produce different ZEP-CME estimation results. But the two 

estimation traces get closer to each other and in the steady 

state )30( =≥ Nk they are exactly the same. This difference 

is considered to be due to the condition of the data block, 

that is, the difference depends on whether the data block for 

the summation operation is filled full or not. 

In Fig. 2 and 3, the block processing method and the 

recursive estimation method produce exactly the same 

learning curves right after N=30 regardless of how different the 

two curves are. Unless the time region before convergence is 

important for any other operations, the normal signal 
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Fig. 2. The ZEP-CME estimation results of the block- 

processing method and the recursive one.  
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Fig. 3. The comparison of ZEP-CME results in the 

initial part of iteration. 

processing operations are carried out after convergence. 

This indicates that the difference in the initial part 

)301( =<≤ Nk  can be ignored because this time region is 

way before convergence.

The gradient is estimated separately by the block- 

processing method (11), and the recursive estimation (12) 

and (13). It is desirable to present gradient results for all 

)11( =L  weights for fair comparison, but only the center 

weight gradient is shown in Fig. 4 and 5 just for the limited 

space of this paper. The Fig. 4 shows similar results that the 

traces of center weight gradient by the two methods go 

together except the initial part 
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Fig. 4. Gradient for the center weight update for the 

two estimation methods of the block- 

processing method and the recursive one.  
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Fig. 5. Gradient comparison in the initial part of 

iteration.

)301( =<≤ Nk . 

In Fig. 5, it is observed apparently that the two methods 

yield exactly the same gradient estimation results in the 

steady state )30( ≥k as observed in Fig. 3 for ZEP-CME 

estimation.

Recursive gradient estimation approaches to zero-error 

probability for CME have not been reported in the scientific 

literature as far as we know. So the convergence performance 

of the proposed method is compared with other recently 

introduced CMA algorithms based on recursive estimation of 

step size. In the recent works [13][14], modified CMA 

algorithms with variable step size (VSS) show improved 

convergence performance. The CMA with VSS (referred to 

as VSS-CMA in this simulation) can be viewed as utilizing 

recursively estimated autocorrelation of error signal ke  as 

summarized in the followings.
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Fig. 6. MSE learning curves in Gaussian noise 

environment.
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kkk yydecisione −= )( (14)

 11 )1( −− −+⋅= kkkk eepp αα (15)
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Unlike the proposed method is for impulsive noise 

environments as in [9], the VSS-CMA algorithm has been 

designed only for Gaussian noise environment so that the 

MSE results are shown in two cases: the Gaussian noise 

case in Fig. 5 and the case of impulsive noise in Fig. 6. The 

parameters kCMA ,μ for CMA, α , and β are set to be  

0.000001, 0.999, and 0.0000000001, respectively. The 

parameter values were chosen when they converged and 

yielded the lowest MSE curves. 

In Fig. 6, VSS-CMA shows a very improved convergence 

performance speed compared to CMA thanks to the usage of 

the error correlation. In the impulsive noise case, however, 

the error correlation information causes the VSS to be highly 

unstable as depicted in Fig. 7. This implies that in (15) the 

multiplication of the two adjacent error samples ke and 1−ke  

can yield an uncontrollably big value when they are afflicted 

by impulsive noise. This problem is considered to be part of 

the reason for the instability of VSS-CMA. On the other 

hand, the proposed algorithm converges well showing no 

sensitivity against impulsive noise.
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Fig. 7. MSE learning curves in impulsive noise 

environment.

6. CONCLUSION 

The blind algorithms developed based on the criterion of 

ZEP-CME yield superior performance but one of its 

drawbacks is a heavy computational burden due to some 

summation operations at an iteration time. In this paper, a 

recursive estimation method of ZEP-CME is proposed and 

its gradient is derived by taking derivation operation to the 

recursive ZEP-CME. The recursive gradient is directly 

applied to the blind algorithm replacing the original 

block-processed gradient with the recursive one. This 

approach significantly reduces the computational complexity 

removing the summation operation. From the simulation 

results that the proposed estimation method of ZEP-CME 

and its gradient produces exactly the same estimation results 

in the steady state as the block-processing method, it can be 

concluded that the proposed method having a significantly 

reduced computational complexity can lead blind algorithms 

based on the ZEP-CME to their efficient implementation.
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