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Estimation of Zero-Error Probability of Constant Modulus Errors for
Blind Equalization
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ABSTRACT

Blind algorithms designed to maximize the probability that constant modulus errors become zero carry out some summation
operations for a set of constant modulus errors at an iteration time inducing heavy complexity. For the purpose of reducing this
computational burden induced from the summation, a new approach to the estimation of the zero-error probability (ZEP) of constant
modulus errors (CME) and its gradient is proposed in this paper. The ZEP of CME af the next iteration time is shown to be calculated
recursively based on the currently calculated ZEP of CME. It also is shown that the gradient for the weight update of the algorithm
can be obtained by differentiating the ZEP of CME estimated recursively. From the simulation results that the proposed estimation
method of ZEP-CME and its gradient produces exactly the same estimation results with a significantly reduced computational complexity
as the block-processing method does.

= keyword : Constant modulus error; Computational Complexity; Gradient; Impulsive noise; Zero-error probability.

1. INTRODUCTION

In the blind signal processing applications to broadcast
and the wireless/mobile networks, a training data set is not
available [1][2][3]. For blind equalization the constant
modulus error (CME) is widely utilized that is defined the
difference between the instant output power and a constant
modulus predefined according to the modulation schemes
[4]. The most commonly used constant modulus algorithm
(CMA) for blind equalization is based on mean squared
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error (MSE) criterion and minimize the average of the
constant modulus error. The averaging operation of the MSE
criterion can mitigate the influence of Gaussian noise on the
algorithm.

However, many communication systems are interfered
with not only Gaussian noise but also impulsive noise from
a variety of impulse noise sources [5][6]. Impulsive noise
induces large instantaneous system output and error which
often makes the system fail.

In impulsive noise environment the CMA based on MSE
criterion is revealed to fail. Instead of the MSE criterion that
utilizes error energy, the correntropy concept has been
proposed as one of the information-theoretic learning (ITL)
method to cope with impulsive noise problems [7][8]. The
correntropy blind method known to be effective in
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maximize the zero-error probability for CME (ZEP-CME)
has been proposed to cope with impulsive noise problem as
well as channel distortions. The algorithm based on
ZEP-CME has shown superior performance in ISI and
impulsive noise environments, but it has one drawback of
requiring heavy computations due to some summation
operations at each iteration time, and that problem hinders
the efficient implementation of the algorithm.

In this paper, for the purpose of reducing the computational
complexity, a recursive approach to the ZEP-CME estimation
and its gradient calculation for the weight update of the
blind algorithm is proposed by investigating how the
computation of ZEP-CME is done and whether any simpler
methods can be possible based on the analysis. And then it
is experimented whether the proposed method of recursive
estimation of the ZEP-CME and its gradient produces the
same equalization performance having no summation operations,
compared to the original method introduced in [9].

This paper is organized as follows. Section 2 presents the
definition of MSE and ZEP-CME. The ZEP-CME is shown
to be able to be estimated recursively in Section 3, and the
recursive estimation of the gradient of the ZEP-CME for the
weight update is introduced in Section 4. Section 5 presents
simulation results and discussions. Finally, concluding
remarks are given in Section 6.

2. MSE AND ZERO-ERROR
PROBABILITY OF CONSTANT
MODULUS ERRORS

The MSE criterion £, for constant modulus error

€cMEk at time k has been employed in many blind
equalization algorithms as
‘2

- R )

Ccmek = ‘yk

points predefined for modulation. By taking the instant
power of CME Pryy =€ty and minimizing it with
respect to weight, the well-known CMA algorithm is derived
[4]. While the ensemble averaging operation in (2) or time
averaging (3) can mitigate the influence of the Gaussian
noise, even a single large impulse in impulsive noise
environments can defeat the averaging causing equalizers
employing the MSE criterion to be unstable.

On the other hand, the ZEP-CME criterion for blind
algorithms have been shown to be well adequate in
impulsive noise channels since the Gaussian kernel
embedded in the criterion has the effect of reducing the
contribution of outlying samples that are located far away
from zero [9]. This characteristic makes algorithms based on
the ZEP-CME criterion insensitive to large errors induced
mostly from impulsive noise.

The probability density function for CME /= (€cur) can

be constructed by the kemel density estimation method
where outliers can be cut out by the Gaussian kernel [10].

1 & 1 _(ec'wE_[‘J’[‘z _Rz])z
N =— F .
Je(ecns) NHZNHO_ hr eXpL 20 ]
1 k
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The zero-error probability of CME is obtained by letting

€cue be zero as

1 & )
=% Z G, (eCME.i)

(ecyz =0)
TeCous N ia ®)

The criterion of ZEP-CME (5) retains the Gaussian

2

-R

function of €cme =|Vi 2 so that output samples where

the instant output power\y,\zis much greater than Ry are cut
out. Usually the large instant output power comes from
impulsive noise. This implies that blind algorithms designed
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based on maximizing the criterion ZEP-CME can be stable
contrary to the MSE-based cost function (2) or (3) [9].
One of the basic ideas of the ITL method is that data
samples can be considered as physical particles in physics.
That is, the CME sample Ccue.i in (5) is considered as
information particles placed at the locations of €cME,i | The
Gaussian kemnel Go(¢ces) has an exponential decay with

2
the distance between the particle ©cwmz.iand the particle
located at zero. This leads us to consider the Gaussian
kernel as a potential field inducing interaction among the

G n
information particles. The right term N ,_ Azm (ecus )

(5) is corresponding to the sum of interactions on the

particle €y, The mequahty N, ZG (cue. )<7,ZG ©

indicates that maximization of ZEP-CME (MZEP-CME)

leads to the result that all Go(€cur) become G,(0), that is,
all CME samples concentrate on zero. Therefore, blind
algorithms designed on the MZEP-CME can have the
capability of cancelling ISI as well as the immunity to
impulsive noise.

One drawback of the criterion ZEP-CME can be the
computational burden from the summation operations in (5)
at each iteration time. This burden hinders the efficient
implementation of blind equalizers based on the criterion
ZEP-CME. In the following section, a method of reducing
the computational complexity significantly by investigating
how the computation of ZEP-CME, that is, the sum of

1 k s
Z G, (eqs )

interactions N .4~ ., is done and whether any

simpler methods can be possible based on the analysis.

3. PROPOSED ESTIMATION

sum of interactions is renewed by computing and summing
all interactions among the squared CME samples. It is

observed that the old squared CME sample CorE ko1
leaves the data block as the new squared CME sample

2 . . . . . . .
€cme k+1comes into it. This indicates that the interactions
2
between €cue k-v+1and the other squared CME samples are

discarded while the new interactions between eém.,kﬂand
the others are added to the sum. It is noticeable that each
new ZEP-CME at time k+1 might be calculated just by

. . . . 2
adding new interactions related with €cwz «+1to the current

sum, and subtracting old interactions related with

e?fME,k—NJrlﬁ‘Om the current sum. This points out that a
simpler method for ZEP-CME calculation can be possible
than the block processing method in (5).

Since the data block for the summation is not filled full
in the initial state 1<k <N, two cases will be discussed

separately as the Jeteas=0), is for the initial state and

fiean =0 s for the steady state k > N.

1 _ _ l S 2
I e =0), =3 20l ©

k
VA 0)‘,{ =ﬁ ZGD'(eg‘ME,i) %)
i=k=N+1

Firstly, the initial state ZEP-CME at time k+l
ffl (ecrs =0)

« Will be divided into some terms related with

2
€cmek+1 and the remaining.

k+1

:O)kﬂ ZG (eCMEx

k+l

Z G, (‘c i)

/ EI (€cye

METHOD OF ZEP-CME "“k
ko
. . . . ZG ( CME;)+ G, (eCMEkH)]
According to the concept of information particle, the k"‘l k
ZEP-CME (5) can be regarded as the sum of interactions k 1
=——[fi(e =0)\ +— G, ()]

among a block data of N squared CME samples k+1 7 ECME ko f 0% CMEkH
{eéME,k’e?j‘ME,k—l""’eéME,k—N-H}, When a new squared CME _

5 f[;( CME ™= )‘ G (eC'VII;kH) @®)
sample €cme.k+1 comes into the data block at time k+1, the
data block becomes {3(2;141;,k+1s3(z;141;,k+2 sssss eZ‘ML' .Aﬂ\wz}, and the In the Steady state,
eh= QY HE5t3| (1575%) 19
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Moo = N i following MZEP-CME algorithm can be obtained.
k
—- 2 2
= N [1_,‘;30(60‘1/1]5,1’)“'Ga(e(w‘wk’kﬂ)] W =W, +pcrn ZN ZG (e(‘MEz)
=k-N+2 i=k=N+1
L&, .
=ﬁ[’:g;+016(€£w.,)+ R, —|y[)-y,- X (11
G (€nir ) = G (€ )] On the other hand, it can be inferred that the gradient at
. af/—(e ME :0)‘ 4
That is, time k1 —  gw  might also be calculated by
FS(eons = 0)‘ = F5(Copse :())‘ differentiating the ZEP-CME in (8) and (9) instead of (5).
. k+1 ! k
. By differentiating (8), the gradient in the initial state
+ N[GU (eéME,kH ) - Go‘ (eéME,k—NH )] (9) ale (ecyr = 0)‘“1

The equations (8) for the initial state shows that the next

ZEP-CME /¢ (e =0)|., can be calculated with the

2
squared CME ©“cwes+t  and the current ZEP-CME

JiCecus = ‘ The equation (9) indicates that in the steady
state, ZEP-CME at the next iteration time k+1 can be
estimated recursively with the current ZEP-CME and a
combination of interactions related with the newly coming
squared CME and the discarded one. Furthermore, this
recursive estimation of ZEP-CME contains no summation
operations at all, contrary to the block-processing method of
ZEP-CME (5).

4. GRADIENT OF ZEP-CME FOR
BLIND EQUALIZATION

Assuming the structure of tapped delay line (TDL) with
L weights is employed, the output Vkat time k with the
input vector X = [ X X and equalizer weight
vector W =[Wos Wi Wik ] can be 3 = WiX,. Blind

algorithms designed based on the performance criterion
ZEP-CME can be derived from the MZEP-CME with

oW becomes

a/:’ (ecrr = 0)‘

k+l

IW
_k af/; (ecue —0)‘ i @ )
T+l oW Tl aw oG
k afF_,(e(‘ME = 0)‘,(
Tk+ oW
1 Gn(eéw k1) aeé‘Mb‘le
k+1 -20° oW
k ) af/:[(ecw: = 0)‘,{
S oW
2 2
_WGa‘(e(,ME,kH)eCME,k-Hyl«-HXl«-H 12)

On the other hand, the gradient in the steady state

aij (€cr = 0)‘“1
oW can be obtained By differentiating (9) as

afES(eCME = 0)‘,\“ _ ast (e = O)L
IW oW
1. 0 a

N ﬁG (ecm o)~

afE (eC’VIE - O)‘ [ G, (e( yam) ae( ME k+1
IW N -20° oW

G (e(,MLk va)]

2 2
_ G, (eCME,k—NH ) aeCME,k—NH ]

respect to the equalizer weights, in which the gradient of the -20° oW
criterion and the steepest ascent method are used. of S (ecy = 0)‘/ 5
e w———— [G (€ )
X oW GZN o \CCME k+1
W, =W +u afg(ecm =0)‘k
ko k oW (10) “Covp g Vie1 Xpai
where # is the step-size for convergence control. —G(Gprr) Cormrnst Vens Xl (13)
20 2014. 10
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With (12) and (13), the weight update operation in (10)
is now carried out recursively. As opposed to the
block-processed gradient (11) having a summation operation,
the recursive equations (12) and (13) show that they have no
summations. That is, the recursive gradient estimation can
significantly reduce its computational complexity.

The computational complexity analysis could be carried
out in the aspects of time complexity and number of
operations (usually multiplications), but in this paper the
number of operations is analyzed according to conventional
complexity analysis in the research field of equalization
[11][12].

For the sake of convenience and comparison, we consider

2
(€Cues

2
the common term WG" )in (11) as a constant. Then

the number of multiplications for the conventional gradient

2
estimation of (11) is 4N . Similarly, defining Nz O ¢cvet)

2 :

and No? Coléusna) in (13) as a constant C, and Cs,
respectively, the number of multiplications for the proposed
estimation of (13) becomes 6. The comparison of
multiplication operations with respect to the data block size
N is described in Fig. 1. It is noticeable that the number of
multiplications of the conventional method increases linearly
proportional to the data block size N while that of the
proposed estimation remains as a constant 6 being
independent of the data block size N'. When N =30 which
will be used in the simulation, the complexity ratio of the
conventional method to the proposed estimation is 20:1.

140 T T T T T T

1204 —+— Conventional estimation _

—O— Proposed estimation

100 4 B

80 B

60 E

Multiplications

404 4

20 B

5 10 15 20 25 30 35

Fig. 1. Comparison of the number of multiplications
for the data block size N.

5. SIMULATION RESULTS AND DISCUSSION

In this section, it will be investigated whether the
proposed estimation of ZEP-CME yields the same estimation
results as the block-processed ZEP-CME estimation method.
Also the recursively estimated gradient of ZEP-CME for the
weight update will be shown to have equal results to that of
the block-processing method.

We use the same blind equalization environment as in
[9]. The parameters for the simulation are the same too as
the data-block size N =30, the convergence parameter

#4=0.02  and the kernel size is set to be o =6. In Fig. 2,
the trace of ZEP-CME is described for the two methods; the
block-processing method by (5), and the recursive estimation
by (8) and (9). The probability ZEP-CME decreases rapidly
with iterations as the algorithm (11) designed to maximize
the ZEP-CME converges. The ZEP-CME converges at about
iteration number 3000 complying exactly with the MSE
convergence result appeared in [9]. However, in Fig. 3
focused in the initial part of iteration (1<k <N =30), a
slight difference is observed that initially the two methods
produce different ZEP-CME estimation results. But the two
estimation traces get closer to each other and in the steady
state (k> N =30) they are exactly the same. This difference
is considered to be due to the condition of the data block,
that is, the difference depends on whether the data block for
the summation operation is filled full or not.

In Fig. 2 and 3, the block processing method and the
recursive estimation method produce exactly the same
learning curves right after N=30 regardless of how different the
two curves are. Unless the time region before convergence is

important for any other operations, the normal signal

0.06 T T T T

0.05 o I
i i I’
i | R 1ol o8

o 1 i i
I "I'iu‘m [y' ‘M IM
M Rl
I | TN

ZEP-CME

0.04 o i

0.03

--——- Block-processing estimation
Recursive estimation

0.02 41 T T T T 1
0 2000 4000 6000 8000 10000
Iterations (number of samples)

Fig. 2. The ZEP-CME estimation results of the block-
processing method and the recursive one.
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Fig. 3. The comparison of ZEP-CME results in the
initial part of iteration.

processing operations are carried out after convergence.
This indicates that the difference in the initial part
(I<k <N =30) can be ignored because this time region is
way before convergence.

The gradient is estimated separately by the block-
processing method (11), and the recursive estimation (12)
and (13). It is desirable to present gradient results for all
(L=11) weights for fair comparison, but only the center
weight gradient is shown in Fig. 4 and 5 just for the limited
space of this paper. The Fig. 4 shows similar results that the
traces of center weight gradient by the two methods go
together except the initial part

002+ 1

—&— Block-processing estimation
—O— Recursive estimation

Center-tap gradient

-0.06

T T T T T T T
300 400 500 600 700 800 900

Iterations (number of samples)

0 1(‘)0 2(‘)0 1000
Fig. 4. Gradient for the center weight update for the
two estimation methods of the block-

processing method and the recursive one.

Iterations (number of samples)
Fig. 5. Gradient comparison in the initial part of
iteration.
(1<k<N=30)

In Fig. 5, it is observed apparently that the two methods
yield exactly the same gradient estimation results in the
steady state (k 2 30)as observed in Fig. 3 for ZEP-CME
estimation.

Recursive gradient estimation approaches to zero-error
probability for CME have not been reported in the scientific
literature as far as we know. So the convergence performance
of the proposed method is compared with other recently
introduced CMA algorithms based on recursive estimation of
step size. In the recent works [13][14], modified CMA
algorithms with variable step size (VSS) show improved
convergence performance. The CMA with VSS (referred to
as VSS-CMA in this simulation) can be viewed as utilizing
recursively estimated autocorrelation of error signal €; as
summarized in the followings.

10 T T T T
5 —O—CMA i
} —O—VSS-CMA
—4— Proposed
w
(%]
s
k]
e
=
0 20‘00 40‘00 60‘00 BOIOO 10000
Iterations (number of samples)
Fig. 6. MSE learning curves in Gaussian noise

environment.
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Uevui =B pi (16) ZEP-CME yield superior performance but one of its
drawbacks is a heavy computational burden due to some
Wi =W =2l i X; '(‘yk‘z -R) 17 vy P

Unlike the proposed method is for impulsive noise
environments as in [9], the VSS-CMA algorithm has been
designed only for Gaussian noise environment so that the
MSE results are shown in two cases: the Gaussian noise
case in Fig. 5 and the case of impulsive noise in Fig. 6. The

parameters A cua .« for CMA, o , and B are set to be
0.000001, 0.999, and 0.0000000001, respectively. The
parameter values were chosen when they converged and
yielded the lowest MSE curves.

In Fig. 6, VSS-CMA shows a very improved convergence
performance speed compared to CMA thanks to the usage of
the error correlation. In the impulsive noise case, however,
the error correlation information causes the VSS to be highly
unstable as depicted in Fig. 7. This implies that in (15) the
multiplication of the two adjacent error samples € and k-1
can yield an uncontrollably big value when they are afflicted
by impulsive noise. This problem is considered to be part of
the reason for the instability of VSS-CMA. On the other
hand, the proposed algorithm converges well showing no
sensitivity against impulsive noise.

W
%]
= —0—CMA
= - 4
g —O—VSS-CMA
e} —4— Proposed
S -
=
N\
A
-25 4
-30 T T T T
0 2000 4000 6000 8000 1000(

Iterations (number of samples)
Fig. 7. MSE learning curves in impulsive noise
environment.

summation operations at an iteration time. In this paper, a
recursive estimation method of ZEP-CME is proposed and
its gradient is derived by taking derivation operation to the
recursive ZEP-CME. The recursive gradient is directly
applied to the blind algorithm replacing the original
block-processed gradient with the recursive one. This
approach significantly reduces the computational complexity
removing the summation operation. From the simulation
results that the proposed estimation method of ZEP-CME
and its gradient produces exactly the same estimation results
in the steady state as the block-processing method, it can be
concluded that the proposed method having a significantly
reduced computational complexity can lead blind algorithms
based on the ZEP-CME to their efficient implementation.

REFERENCES

[1] W. M. Moh, Y. Chen, “Multicasting flow control for
hybrid wired/wireless ATM networks,” Performance
Evaluation, Vol. 40, Mar. 2000, pp. 161-194.

[2] L. M. Garth, “A dynamic convergence analysis of blind
equalization algorithms,” IEEE Trans. on Comm., Vol.
49, April. 2001, pp. 624-634

[3] F. Mazzenga, “Channel estimation and equalization for
M-QAM transmission with a hidden pilot sequence,” IEEE
Trans. on Broadcasting, Vol. 46, June. 2000, pp. 170-176

[4] J. R. Treichler and B. Agee, “A new approach to multipath
correction of constant modulus signals,” IEEE Trans.
Acoust., Speech, Signal Process. Vol. ASSP-31, Nov. 1983,
pp. 349-372.

[5] Sedarat and K. Fisher, Multicarrier communication in
presence of biased-Gaussian noise sources, Signal
Processing, Vol. 88, July 2008, pp. 1627-1635.

[6] S. Unawong, S. Miyamoto, and N. Morinaga, A novel
receiver design for DS-CDMA systems under impulsive
radio noise environments, IEICE Trans. Comm., Vol.
E82-B, June 1999, pp. 936 -943.

ror
Hl
ro
Ll
o
0!
HT
o
tolr

| (15753)

23



=efele

oln
mju
rok

2= ¢

AR DERA Q%0

3 gy

of-

o

P

=

Jtol

[7] J. Principe, D. Xu and J. Fisher, Information Theoretic
Learning in: S. Haykin, Unsupervised Adaptive Filtering,
Wiley, New York, USA), 2000, pp. 265-319.

[8] I. Santamaria, P. P. Pokharel, and J. C. Principe,
Generalized correlation function: Definition, properties,
and application to blind equalization, IEEE Trans. Signal
Processing, Vol.54, June 2006, pp. 2187-2197.

[9] N. Kim, “Performance analysis of maximum zero-error
probability algorithm for blind equalization in impulsive
noise channels,” Journal of Korean Society for Internet
Information, vol. 11, Oct. 2010, pp. 1-8.

[10] E. Parzen, “On the estimation of a probability density
function and the mode,” Ann. Math. Stat. Vol. 33, 1962,
p.1065.

[11] S. Yassin, H. Tawfik, “Reduced complexity decision
feedback channel equalizer using series expansion

[12]

(13]

[14]

division”, AICT 2013 : The Ninth Advanced International
Conference on Telecommunications, Rome, Italy, June
2013, pp. 219-223.

J. Park, Y. Whang, and K. Kim, “Low complexity
MMSE-SIC equalizer employing time-domain recursion
for OFDM systems”, IEEE Signal Processing Letters,
Vol. 15, Oct. 2008, pp. 633-636

V. Swathi, K. Rajani and K. Padmaja, “Blind equalization
based on modified constant modulus algorithm”,
International Journal of Advanced Research in Computer
and Communication Engineering, Vol. 3, Issue 5, May
2014, pp. 6523-6525.

M. Demir and A. Ozen, “A novel variable step size
adjustment method based on autocorrelation of error signal
for the constant modulus blind equalization algorithm”,
Radio Engineering, Vol. 21, April 2012, pp. 37-45.

OXM A =710

d & & (Namyong Kim)

E-mail : namyong @kangwon.ac.kr

19861 AAMhetn HAF8 Z=(3HAD

1988 AAthstnL thshel AESt E4(HAD
19918 At ok ARt Z40iab
1992-1998d #-Eoh 3l AA-EAE5
1998 ~ A ZFdthsta HAARFA
FAI RO} : Adaptive equalization, RBFN algorithms, etc.

Bas
TEH T2
T uF

24

2014. 10



