References
- ACI 214.4R-03 (2003), Guide for Obtaining Cores and Interpreting Compressive Strength Results, American Concrete Institute, Detroit, USA.
- ACI 228.2R-98 (1998), Non destructive Test Methods for Evaluation of Concrete in Structures, American Concrete Institute, Detroit, USA.
- Arioz, O., Tuncan, M., Ramyar, K. and Tuncan, A. (2006), "A comparative study on the interpretation of concrete core strength results", Mag. Concrete Res., 58(2), 117-22. https://doi.org/10.1680/macr.2006.58.2.117
- ASTM Committee C 597-02 (2002), Standard Test Method for Pulse Velocity Through Concrete, American Society for Testing and Materials, Philadelphia, USA.
- ASTM Committee C09.61 (1992), Standard test method for obtaining and testing drilled cores and sawed beams of concrete (ASTM C42-90), Annual Book of ASTM Standards, American Society for Testing and materials. Philadelphia, USA.
- Bartlett, F.M. and MacGregor, J.G. (1994a), "Effect of core diameter on concrete core strengths", ACI Mater. J., 91(5), 460-470.
- Bartlett, F.M. and MacGregor, J.G. (1994b), "Effect of core length to diameter ratio on concrete core strength", ACI Mater. J., 91(4), 339-348.
- Bartlett, F.M. and MacGregor, J.G. (1994c), "Effect of moisture condition on concrete core strengths", ACI Mater. J., 91(3), 227-236.
- Bartlett, F.M. and MacGregor, J.G. (1999), "Variation of in-place concrete strength", ACI Mater. J., 96(2), 261-70.
- Bloem, D.L. (1965), "Concrete strength measurement- cores versus cylinders", Am. Soc. Test. Mater., 56, 668-696.
- Bloem, D.L. (1968), "Concrete strength in structures", ACI J. Pr., 65(3), 176-187.
- British Standard n.1881 (1983), Part 120, Method for Determination of Compressive Strength of Concrete Cores,British Standard Institute, U.K.
- C.S.LL.PP. (2008), Norme tecniche per le costruzioni, D.M. 14/01/2008, Gazzetta Ufficiale della Repubblica Italiana n. 29-2008, Roma. (In Italian)
- C.S.LL.PP. (2009), Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al Decreto Ministeriale 14 gennaio 2008, Circolare Ministeriale 2 febbraio 2009, n. 617, Consiglio Superiore dei Lavori Pubblici, Roma. (in Italian)
- Campbell, R.H. and Tobin, R.E. (1967), "Core and cylinder strengths of natural and lightweight concrete" ACI J. Pr., 64(4),190-195.
- CEN (2005a), Eurocode 2: Design of concrete structures, Part 1-1: General rules and rules for buildings, European Committee for Standardization, Brussels, Belgium.
- CEN (2005b), Eurocode 8: Design of structures for earthquake resistance, Part 3: Assessment and retrofitting of buildings, European Committee for Standardization Brussels, Belgium.
- Collepardi, M. (2010), The new concrete, Edizioni Tintoretto, Villarba, Italy.
- Dolce, M., Masi, A. and Ferrini, M. (2006). "Estimation of the actual in-place concrete strength in assessing existing RC structures", Proceedings of 2nd International fib Congress, Naples, June.
- FEMA 274, (1997), NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington D.C. USA.
- Fiore, A., Porco, F., Uva, G. and Mezzina, M. (2013), "On the dispersion of data collected by in situ diagnostic of the existing concrete", Construct. Build. Mater., 47, 208-217. https://doi.org/10.1016/j.conbuildmat.2013.05.001
- Halstead, P.E. (1969), "The significance of concrete cube tests", Mag. Concrete Res., 21(69), 187-194. https://doi.org/10.1680/macr.1969.21.69.187
- Lewis, R.K. (1976), "Effect of core diameter on the observed strength of concrete cores", Commowealth Scientific and Industrial Research Organization Division of Building, Research Report No. 50. Melbourne, Australia.
- Loo, Y.H., Tan, C.W. and Tam, C.T. (1989), "Effects of embedded reinforcement on the measured strength of concrete cylinders", Mag. Concrete Res., 41(146), 11-18. https://doi.org/10.1680/macr.1989.41.146.11
- Malhotra, V.M. (1976), Testing Hardened Concrete: Non-destructive Methods, ACI Monograph No. 9, Detroit, USA.
- Masi, A. and Chiauzzi, L. (2013), "An experimental study on the within-member variability of in-situ concrete strength in RC building structures", Construct. Build. Mater., 47, 951-961. https://doi.org/10.1016/j.conbuildmat.2013.05.102
- Masi, A., Digrisolo, A. and Santarsiero, G. (2013), "Experimental evaluation of drilling damage on the strength of cores extracted from RC buildings", Proceedings of the International Conference on Earthquake and Structural Engineering (ICESE 2013), Stockholm, July.
- Masi, A. and Vona, M. (2009), "La stima della resistenza del calcestruzzo in-situ: impostazione delle indagini ed elaborazione dei risultati", Progettazione sismica, 1/2009, IUSS Press, Pavia, Italy. (in Italian)
- Meininger, R.C. (1968), "Effect of core diameter on measured concrete strength", J. Mater., 3(2), 320-336.
- Meininger, R.C., Wagner, F.T. and Hall, K.W. (1977), "Concrete core strength - the effect of length to diameter ratio", J. Test. Eval., 5(3), 147-153. https://doi.org/10.1520/JTE11631J
- Mikulic, D., Pause, Z. and Ukraincik, V. (1992), "Determination of concrete quality in a structure by combination of destructive and non-destructive methods", Mater. Struct., 25, 65-9. https://doi.org/10.1007/BF02472458
- Murdock, J.W. and Kesler, C.E. (1957), "Effect of length to diameter ratio of specimen on the apparent compressive strength of concrete", ASTM Bull., 68-73.
- Newman, K. and Lachance, L. (1964), "The testing of brittle materials under uniform uniaxial compressive stresses", Proceedings of the American Society for Testing and Materials, 64, 1044-1067.
- PCM (2003), Norme tecniche per il progetto, la valutazione e l'adeguamento degli edifici - Allegato 2, O.P.C.M., n.3274 - 20/03/2003, Presidenza del Consiglio dei Ministri, Roma. (in Italian)
- Qasrawi, H.Y. (2000), "Concrete strength by combined nondestructive methods simply and reliably predicted", Cement Concrete Res., 30, 739-746. https://doi.org/10.1016/S0008-8846(00)00226-X
- Sturrup, V.R., Vecchio, F.J. and Caratin, H. (1984), "Pulse velocity as a measure of concrete compressive strength", In Situ/nondestructive Testing of Concrete, Special Publication SP-82, American Concrete Institute, Detroit.
- Trtnik, G., Kavcic, F. and Turk, G. (2009), "Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks", Ultrasonics, 49(1), 53-60. https://doi.org/10.1016/j.ultras.2008.05.001
- UNI EN 12390-1 (2009), Testing hardened concrete - Shape, dimensions and other requirements for specimens and moulds, Unification National Institute, Brussels, Belgium.
- UNI EN 12390-3, (2009), Testing hardened concrete - Compressive strength of test specimens, Unification National Institute, Brussels, Belgium.
- UNI EN 12504-1 (2009), Testing concrete in structures - Cored specimens - Taking, examining and testing in compression, Unification National Institute, Brussels, Belgium.
- Uva, G., Porco, F., Fiore, A. and Mezzina, M. (2013), "Proposal of a methodology of in-situ concrete tests and improving the estimate of the compressive strength", Construct. Build. Mater., 38(1), 72-83. https://doi.org/10.1016/j.conbuildmat.2012.08.025
- Uva, G., Porco, F., Fiore, A. and Mezzina, M. (2014), "The assessment of structural concretes during construction phases", Struct. Sur., J. Build. Path. Refurbish., 32(3), DOI: 10.1108/SS-06-2013-0023.
Cited by
- Effects in Conventional Nonlinear Static Analysis: Evaluation of Control Node Position vol.13, 2018, https://doi.org/10.1016/j.istruc.2017.12.006
- RPAS-Based Framework for Simplified Seismic Risk Assessment of Italian RC-Bridges vol.10, pp.9, 2020, https://doi.org/10.3390/buildings10090150
- Concrete strength monitoring based on the variation of ultrasonic waveform acquired by piezoelectric aggregates vol.76, pp.5, 2014, https://doi.org/10.12989/sem.2020.76.5.591