References
- Allahverdizadeh, A., Naei, M.H. and Nikkhah Bahrami M. (2008), "Nonlinear free and forced vibration analysis of thin circular functionally graded plates", J. Sound Vib., 310(4-5), 966-984. https://doi.org/10.1016/j.jsv.2007.08.011
- Amini, M.H., Soleimani, M. and Rastgoo, A. (2009), "Three-dimensional free vibration analysis of functionally graded material plates resting on an elastic foundation", Smart Mater. Struct., 18(8), 085015. https://doi.org/10.1088/0964-1726/18/8/085015
- Bellman, R. and Casti, J. (1971), "Differential quadrature and long term integration", J. Math. Anal. Appl., 34(2), 235-238. https://doi.org/10.1016/0022-247X(71)90110-7
- Benveniste, Y. (1987), "A new approach to the application of Mori-Tanaka's theory of composite materials", Mech. Mater., 6(2), 147-157. https://doi.org/10.1016/0167-6636(87)90005-6
- Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics, a review", Appl. Mech. Rev., 49(1), 1-27. https://doi.org/10.1115/1.3101882
- Columbia Accident Investigation Board (2003a), Report of Columbia Accident Investigation Board, Vol. I. NASA.
- Columbia Accident Investigation Board (2003b), In-Flight Options Assessment, Vol. II. NASA, Appendix D.12 (PDF).
- Dasgupta, A. and Bhandarkar, S.M. (1992), "A generalized self-consistent Mori-Tanaka scheme for fibercomposites with multiple inter-phases", Mech. Mater., 14(1), 67-82. https://doi.org/10.1016/0167-6636(92)90019-A
- Dong, C.Y. (2008), "Three-dimensional free vibration analysis of functionally graded annular plates using the Chebyshev-Ritz method", Mater. Des., 29(8), 1518-1525. https://doi.org/10.1016/j.matdes.2008.03.001
- Ebrahimi, F. and Rastgo, A. (2008), "An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory", Thin Walled Struct., 46(12), 1402-1408. https://doi.org/10.1016/j.tws.2008.03.008
- Efraim, E. and Eisenberger, M. (2007), "Exact vibration analysis of variable thickness thick annular isotropic and FGM plates", J. Sound Vib., 299(4-5), 720-738. https://doi.org/10.1016/j.jsv.2006.06.068
- Eraslan, A.N. and Akis, T. (2009), "On the plane strain and plane stress solutions of functionally graded rotating solid shaft and solid disk problems", Acta Mech., 181(1-2), 43-63.
- Genin, G.M. and Birman, V. (2009), "Micromechanics and Structural Response of Functionally Graded, Particulate-Matrix, Fiber-Reinforced Composites", Int. J. Solids Struct., 46(10), 2136-2150. https://doi.org/10.1016/j.ijsolstr.2008.08.010
- Gupta, U.S., Lal, R. and Jain, S.K. (1990), "Effect of elastic foundation on axisymmetric vibrations of polar orthotropic circular plates of variable thickness", J. Sound Vib., 139(3), 503-513. https://doi.org/10.1016/0022-460X(90)90679-T
- Gupta, U.S., Lal, R. and Sharma, S. (2006), "Vibration analysis of non-homogeneous circular plate of nonlinear thickness variation by differential quadrature method", J. Sound Vib., 298(4-5), 892-906. https://doi.org/10.1016/j.jsv.2006.05.030
- Hosseini Hashemi, S., Omidi, M. and Rokni Damavandi Taher, H. (2009), "The validity range of CPT and Mindlin plate theory in comparison with 3-D vibration analysis of circular plates on the elastic foundation", Eur. J. Mech. A Solids, 28(3-5), 289-304. https://doi.org/10.1016/j.euromechsol.2008.07.012
- Hosseini Hashemi, S., Rokni Damavandi Taher, H. and Akhavan, H. (2010), "Vibration analysis of radially FGM sectorial plates of variable thickness on elastic foundations", Compos. Struct., 92(7), 1734-1743. https://doi.org/10.1016/j.compstruct.2009.12.016
- Hosseini Hashemi, S., Rokni Damavandi Taher, H. and Omidi, M. (2008), "3-D free vibration analysis of annular plates on Pasternak elastic foundation via p-Ritz method", J. Sound Vib., 311(3), 1114-1140. https://doi.org/10.1016/j.jsv.2007.10.020
- Hu, G.K. and Weng, G.J. (2000), "The Connections between the double-inclusion model and the Ponte Castaneda- Willis, Mori-Tanaka, and Kuster-Toksoz models", Mech. Mater., 32(8), 495-503. https://doi.org/10.1016/S0167-6636(00)00015-6
- Liew, K.M. and Liu, F.L. (2000), "Differential quadrature method for vibration analysis of shear deformable annular sector plates", J. Sound Vib., 230(2), 335-356. https://doi.org/10.1006/jsvi.1999.2623
- Liew, K.M., Han, J.B., Xiao, Z.M. and Du, H. (1996), "Differential quadrature method for Mindlin plates on Winkler foundation", Int. J. Mech. Sci., 38(4), 405-421. https://doi.org/10.1016/0020-7403(95)00062-3
- Liu, F.L. and Liew, K.M. (1999), "Free vibration analysis of Mindlin sector plates numerical solutions by differential quadrature method", Comput. Meth. Appl. Mech. Eng., 177(1-2), 77-92. https://doi.org/10.1016/S0045-7825(98)00376-4
- Malekzadeh, P. (2009), "Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations", Compos. Struct., 89(3), 367-373. https://doi.org/10.1016/j.compstruct.2008.08.007
- Malekzadeh, P. and Karami, G. (2004), "Vibration of non-uniform thick plates on elastic foundation by differential quadrature method", Eng. Struct., 26(10), 1473-1482. https://doi.org/10.1016/j.engstruct.2004.05.008
- Matsunaga, H. (2000), "Vibration and stability of thick plates on elastic foundations", J. Eng. Mech., ASCE, 126(1), 27-34. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(27)
- Ming Hung, H. (2010), "Vibration analysis of orthotropic rectangular plates on elastic foundations", Compos. Struct., 92(4), 844-852. https://doi.org/10.1016/j.compstruct.2009.09.015
- Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall., 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
- Nie, G.J. and Zhong, Z. (2007), "Semi-analytical solution for three-dimensional vibration of functionally graded circular plates", Comput. Mech. Appl., 196(49-52), 4901-4910. https://doi.org/10.1016/j.cma.2007.06.028
- Nie, G.J. and Zhong, Z. (2010), "Dynamic analysis of multi-directional functionally graded annular plates", Appl. Math. Modell., 34(3), 608-616. https://doi.org/10.1016/j.apm.2009.06.009
- Ponnusamy, P. and Selvamani, R. (2012), "Wave propagation in a generalized thermo elastic plate embedded in elastic medium", IMM, An Int. J., 5(1), 13-26.
- Prakash, T. and Ganapathi, M. (2006), "Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method", Compos Part B, 37(7-8), 642-649. https://doi.org/10.1016/j.compositesb.2006.03.005
- Shafiee, A.A., Daneshmand, F., Askari, E., Mahzoon, M. (2014), "Dynamic behavior of a functionally graded plate resting on Winkler elastic foundation and in contact with fluid", Struct. Eng. Mech., 50(1), 53-71. https://doi.org/10.12989/sem.2014.50.1.053
- Shu, C. (2000), Differential Quadrature and its Application in Engineering, Springer, Berlin, Germany.
- Shu, C. and Wang, C.M. (1999), "Treatment of mixed and nonuniform boundary conditions in GDQ vibration analysis of rectangular plates", Eng. Struct., 21(2), 125-134. https://doi.org/10.1016/S0141-0296(97)00155-7
- Sobhani Aragh, B. and Yas, M.H. (2010), "Static and free vibration analyses of continuously graded fiberreinforced cylindrical shells using generalized power-law distribution", Acta Mech., 215(1-4), 155-173. https://doi.org/10.1007/s00707-010-0335-4
- Tahouneh, V. and Yas, M.H. (2012), "3-D free vibration analysis of thick functionally graded annular sector plates on Pasternak elastic foundation via 2-D differential quadrature method", Acta Mech., 223(9), 1879-1897. https://doi.org/10.1007/s00707-012-0648-6
- Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Meth. Appl. Mech. Eng., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011
- Vel, S.S. (2010), "Exact elasticity solution for the vibration of functionally graded anisotropic cylindrical shells", Compos. Struct., 92(11), 2712-2727. https://doi.org/10.1016/j.compstruct.2010.03.012
- Vel, S.S. and Batra, R.C. (2002), "Exact solution for thermoelastic deformations of functionally graded thick rectangular plates", AIAA, 40(7), 1421-1433. https://doi.org/10.2514/2.1805
- Wang, X. and Wang, Y. (2004), "Free vibration analyses of thin sector plates by the new version of differential quadrature method", Comput. Meth. Appl. Mech. Eng., 193(36-38), 3957-3971. https://doi.org/10.1016/j.cma.2004.02.010
- Xiang, Y., Kitipornchai, S. and Liew, K.M. (1996), "Buckling and vibration of thick laminates on Pasternak foundations", J. Eng. Mech., ASCE, 122(1), 54-63. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:1(54)
- Xiang, Y., Wang, C.M. and Kitipornchai, S. (1994), "Exact vibration solution for initially stressed Mindlin plates on Pasternak foundations", Int. J. Mech. Sci., 36(4), 311-316. https://doi.org/10.1016/0020-7403(94)90037-X
- Yas, M.H. and Sobhani Aragh, B. (2010), "Free vibration analysis of continuous grading fiber reinforced plates on elastic foundation", Int. J. Eng. Sci., 48(12), 1881-1895. https://doi.org/10.1016/j.ijengsci.2010.06.015
- Zhou, D., Cheung, Y.K., Lo, S.H. and Au, F.T.K. (2004), "Three-dimensional vibration analysis of rectangular thick plates on Pasternak foundation", Int. J. Numer. Meth. Eng., 59(10), 1313-1334. https://doi.org/10.1002/nme.915
- Zhou, D., Lo, S.H., Au, F.T.K .and Cheung, Y.K. (2006), "Three-dimensional free vibration of thick circular plates on Pasternak foundation", J. Sound Vib., 292(3-5), 726-741. https://doi.org/10.1016/j.jsv.2005.08.028
Cited by
- Three-dimensional vibration of a ring with a noncircular cross-section on an elastic foundation 2017, https://doi.org/10.1177/0954406217720823
- Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation vol.57, pp.1, 2016, https://doi.org/10.12989/sem.2016.57.1.105
- Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates vol.20, pp.3, 2016, https://doi.org/10.12989/scs.2016.20.3.623
- The effects of carbon nanotube waviness and aspect ratio on the buckling behavior of functionally graded nanocomposite plates using a meshfree method vol.38, 2017, https://doi.org/10.1002/pc.23814
- 3D free vibration analysis of elastically supported thick nanocomposite curved panels with finite length and different boundary conditions via 2D GDQ method vol.23, pp.10, 2016, https://doi.org/10.1080/15376494.2015.1068402
- Nonlinear free and forced vibration analysis of FG-CNTRC annular sector plates pp.02728397, 2019, https://doi.org/10.1002/pc.24998
- Vibrational analysis of sandwich sectorial plates with functionally graded sheets reinforced by aggregated carbon nanotube pp.1530-7972, 2020, https://doi.org/10.1177/1099636218785972
- An analytical approach for free vibrations analysis of viscoelastic circular and annular plates using FSDT pp.1537-6532, 2020, https://doi.org/10.1080/15376494.2018.1472348
- Free vibration analysis of elastically restrained functionally graded curved beams based on the Mori–Tanaka scheme pp.1537-6532, 2019, https://doi.org/10.1080/15376494.2018.1452318
- Using modified Halpin-Tsai approach for vibrational analysis of thick functionally graded multi-walled carbon nanotube plates vol.23, pp.6, 2014, https://doi.org/10.12989/scs.2017.23.6.657
- Free vibration behavior of viscoelastic annular plates using first order shear deformation theory vol.62, pp.5, 2014, https://doi.org/10.12989/sem.2017.62.5.607
- The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates vol.24, pp.6, 2014, https://doi.org/10.12989/scs.2017.24.6.711
- Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core vol.25, pp.3, 2017, https://doi.org/10.12989/scs.2017.25.3.347
- Dynamic response of functionally graded annular/circular plate in contact with bounded fluid under harmonic load vol.65, pp.5, 2018, https://doi.org/10.12989/sem.2018.65.5.523
- Quasi-3D static analysis of two-directional functionally graded circular plates vol.27, pp.6, 2014, https://doi.org/10.12989/scs.2018.27.6.789
- An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions vol.16, pp.1, 2014, https://doi.org/10.12989/gae.2018.16.1.001
- Numerical approaches for vibration response of annular and circular composite plates vol.29, pp.6, 2018, https://doi.org/10.12989/scs.2018.29.6.759
- Vibration of angle-ply laminated composite circular and annular plates vol.34, pp.1, 2020, https://doi.org/10.12989/scs.2020.34.1.141
- Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment vol.8, pp.1, 2014, https://doi.org/10.12989/anr.2020.8.1.083
- Free vibration analysis of functionally graded beams with variable cross-section by the differential quadrature method based on the nonlocal theory vol.75, pp.6, 2020, https://doi.org/10.12989/sem.2020.75.6.737
- Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length vol.38, pp.5, 2014, https://doi.org/10.12989/scs.2021.38.5.477