DOI QR코드

DOI QR Code

Study on the Characteristics of Infinite Slope Failures by Probabilistic Seepage Analysis

확률론적 침투해석을 통한 무한사면 파괴의 특성 연구

  • Cho, Sung-Eun (Dept. of Civil, Safety, and Environmental Engrg., Hankyong National Univ.)
  • 조성은 (한경대학교 토목안전환경공학과)
  • Received : 2014.01.23
  • Accepted : 2014.10.21
  • Published : 2014.10.31

Abstract

Many regions around the world are vulnerable to rainfall-induced slope failures. A variety of methods have been proposed for revealing the mechanism of slope failure initiation. Current analysis methods, however, do not consider the effects of non-homogeneous soil profiles and variable hydraulic responses on rainfall-induced slope failures. In this study, probabilistic stability analyses were conducted for weathered residual soil slopes with different soil thickness overlying impermeable bedrock to study the rainfall-induced failure mechanisms depending on the soil thickness. A series of seepage and stability analyses of an infinite slope based on one-dimensional random fields were performed to consider the effects of uncertainty due to the spatial heterogeneity of hydraulic conductivity on the failure of unsaturated slopes due to rainfall infiltration. The results showed that a probabilistic framework can be used to efficiently consider various failure patterns caused by spatial variability of hydraulic conductivity in rainfall infiltration assessment for a infinite slope.

세계의 많은 지역이 강우에 의한 사면파괴가 취약하다. 사면파괴의 발생 메커니즘을 파악하기 위해 지금까지 다양한 방법들이 제안되어져 왔으나 현재 사용되는 방법들은 비균질한 지반분포와 수리학적 거동이 강우로 인한 사면파괴에 미치는 효과를 고려하지 못한다. 본 연구에서는 강우 시 토층의 두께에 따른 사면파괴의 발생 메커니즘을 연구하기 위하여 불투수 기반암 위에 존재하는 풍화 잔류토 사면에 대한 확률론적 사면안정 해석을 수행하였다. 불균질한 투수계수의 공간적 분포로 인한 불확실성이 강우침투에 의한 불포화 사면의 파괴에 미치는 영향을 고려하기 위하여 일차원 랜덤필드에 기초한 일련의 침투해석과 사면 안정해석을 수행하였다. 해석결과에 의하면 확률론적 해석법은 사면에 대한 강우의 침투 평가 시 투수계수의 공간적인 변동에 의하여 발생하는 다양한 파괴 패턴을 효과적으로 고려할 수 있음을 보여준다.

Keywords

References

  1. Baecher, G. B. and Christian, J. T. (2003), Reliability and Statistics in Geotechnical Engineering, John Wiley & Sons.
  2. Bishop, A. W. (1959), "The principle of effective stress", Teknisk Ukeblad, Vol.106, No.39, pp.859-863.
  3. Cho, S. E. (2012), "Probabilistic analysis of seepage that considers the spatial variability of permeability for an embankment on soil foundation", Engineering Geology, Vol.133-134, pp.30-39. https://doi.org/10.1016/j.enggeo.2012.02.013
  4. Cho, S. E. (2014), "Probabilistic stability analysis of rainfall-induced landslides considering spatial variability of permeability", Engineering Geology, Vol.171, pp.11-20. https://doi.org/10.1016/j.enggeo.2013.12.015
  5. Cho, S. E. and Lee, S. R. (2001), "Instability of unsaturated soil slopes due to infiltration", Computers and Geotechnics, Vol.28, No. 3, pp.185-208. https://doi.org/10.1016/S0266-352X(00)00027-6
  6. Cho, S. E. and Lee, S. R. (2002), "Evaluation of surficial stability for homogeneous slopes considering rainfall characteristics", Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.9, pp.756-763. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(756)
  7. Cho, S. E. and Park, H. C. (2008), "A study on the probabilistic analysis method considering spatial variability of soil properties", Journal of Korean Geotechnical Society(KGS), Vol.24, No.8, pp. 111-123.
  8. DeGroot, D. J. and Baecher, G. B. (1993), "Estimating autocovariance of in-situ soil properties", Journal of the Geotechnical Engineering, Vol.119, No.1, pp.147-166. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(147)
  9. Elkateb, T., Chalaturnyk, R., and Robertson, P. K. (2002), "An overview of soil heterogeneity: Quantification and implications on geotechnical field problems", Canadian Geotechnical Journal, Vol.40, No.1, pp.1-15.
  10. Fenton, G. A. and Griffiths, D. V. (1993), "Statistics of block conductivity through a simple bounded stochastic medium", Water Resources Research, Vol.29, No.6, pp.1825-1830. https://doi.org/10.1029/93WR00412
  11. Fredlund, D. G., Rahardjo, H., and Fredlund, M. D. (2012), Unsaturated Soil Mechanics in Engineering Practice, John Wiley & Sons, New York.
  12. Ghanem, R. G. and Spanos, P. D. (1991), Stochastic Finite Element-A Spectral Approach, Springer Verlag, New York.
  13. Griffiths, D. V. and Fenton, G. A. (1993), "Seepage beneath water retaining structures founded on spatially random soil", Geotechnique, Vol.43, No.4, pp.577-587. https://doi.org/10.1680/geot.1993.43.4.577
  14. Gui, S., Zhang, R., Turner J. P., and Xue, X. (2000), "Probabilistic slope stability analysis with stochastic hydraulic conductivity", Journal of Geotechnical and Geoenvironmental Engineering, Vol.126, No.1, pp.1-9. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:1(1)
  15. Huber, M., Moellmann, A., Vermeer, P. A., and Bardossy, A. (2009), "Contributions to probabilistic soil modelling", Proceedings of the 7th International Probabilistic Workshop, Delft, pp.1-12.
  16. Itasca (2011), User's Manual : Fluid-Mechanical Interaction, FLAC 7.0, Itasca Consulting Group Inc. Minneapolis.
  17. Jeon, K. H., Lee, S. R., Yoon, S., and Kim, Y. T. (2013), "Slope stability analysis based on probabilistic characteristics of unsaturated soil properties of weathered granite soil", Journal of KOSHAM, Vol.13, No.1, pp.161-168. https://doi.org/10.9798/KOSHAM.2013.13.1.161
  18. Kim, Y. K. (2003), Permeability of unsaturated weathered soils by analyzing triaxial permeameter test results, Master thesis, KAIST.
  19. Lacasse, S. and Nadim, F. (1996), Uncertainties in characterizing soil properties. Uncertainty in the Geologic Environment: From Theory to Practice, In: Shackleford, C. D., Nelson, P. P., Roth, M. J. S. (Eds.), Geotechnical Special Publication No. 58. ASCE, pp.49-75.
  20. Li, W. C., Lee, L. M., Cai, H., Li, H. J., Dai, F. C., and Wang, M. L. (2013), "Combined roles of saturated permeability and rainfall characteristics on surficial failure of homogeneous soil slope", Engineering Geology, Vol.153, pp.105-113. https://doi.org/10.1016/j.enggeo.2012.11.017
  21. Lu, N. and Likos, W. J. (2006), "Suction stress characteristic curve for unsaturated soil", Journal of Geotechnical and Geoenvironmental Engineering, Vol.132, No.2, pp.131-142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131)
  22. Lu, N. and Godt, J. (2008), "Infinite slope stability under steady unsaturated seepage conditions", Water Resources Research, Vol.44, No.11, W11404.
  23. Lu, N. and Godt, J. (2013), Hillslope Hydrology and Stability, Cambridge University Press, New York.
  24. Ng, C. W. W. and Shi, Q. A. (1998), "A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage", Computer and Geotechnics, Vol.22, No.1, pp.1-28. https://doi.org/10.1016/S0266-352X(97)00036-0
  25. Ray, R., Jacobs, J., and de Alba, P. (2010), "Impacts of unsaturated zone soil moisture and groundwater table on slope instability", Journal of Geotechnical and Geoenvironmental Engineering, Vol.136, No.10, pp.1448-1458. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000357
  26. Santoso, A. M., Phoon, K. K., and Quek, S. T. (2011), "Effects of soil spatial variability on rainfall-induced landslides", Computers and Structures, Vol.89, No.11-12, pp.893-900. https://doi.org/10.1016/j.compstruc.2011.02.016
  27. Srivastava, A., Sivakumar Babu, G. L., and Haldar, S. (2010), "Influence of spatial variability of permeability property on steady state seepage flow and slope stability analysis", Engineering Geology, Vol.110, No.3-4, pp.93-101. https://doi.org/10.1016/j.enggeo.2009.11.006
  28. Yoo, N. J., Park, B. S., Lee, M. W., and Lee, J. H. (2001), "Development of probabilitistic model of landslides using infinite slope stability analysis", Journal of KSCE, Vol.21, No.1C, pp.57-68.
  29. van Genuchten, M. T. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils", Soil Science Society America Journal, Vol.44, No.5, pp.892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  30. Zhang, L. L., Fredlund, D. G., Zhang, L. M., and Tang, W. H. (2004), "Numerical study of soil conditions under which matric suction can be maintained", Canadian Geotechnical Journal, Vol.41, No.4, pp.569-582. https://doi.org/10.1139/t04-006
  31. Zhang, L. L., Zhang, J., Zhang, L. M., and Tang, W. H. (2011), "Stability analysis of rainfall-induced slope failure: a review", Proceedings of the ICE-Geotechnical Engineering, Vol.164, No.5, pp.299-316.

Cited by

  1. Effects of Two-Phase Flow of Water and Air on Shallow Slope Failures Induced by Rainfall: Insights from Slope Stability Assessment at a Regional Scale vol.12, pp.3, 2020, https://doi.org/10.3390/w12030812
  2. Slope Stability Analysis of Unsaturated Soil Slopes Based on the Site-Specific Characteristics: A Case Study of Hwangryeong Mountain, Busan, Korea vol.12, pp.7, 2014, https://doi.org/10.3390/su12072839