DOI QR코드

DOI QR Code

QP Solution for the Implementation of the Predictive Control on Microcontroller Systems and Its Application Method

예측제어의 마이크로콘트롤러 구현을 위한 QP 해법과 그 적용방법

  • Lee, Young-Sam (Department of Electrical Engineering, Inha University) ;
  • Gyeong, Gi-Young (Department of Electrical Engineering, Inha University) ;
  • Park, Jae-Heon (Department of Electrical Engineering, Inha University)
  • 이영삼 (인하대학교 전기공학과) ;
  • 경기영 (인하대학교 전기공학과) ;
  • 박재헌 (인하대학교 전기공학과)
  • Received : 2014.05.12
  • Accepted : 2014.06.19
  • Published : 2014.09.01

Abstract

In this paper, we propose a method by which QP (Quadratic Programming) problems can be solved in realtime so that we can implement the predictive control algorithm on a microcontroller system. Firstly, we derive a solution to QP problems by converting the original QP problems to its equivalent least squares with inequalities. Secondly, we propose a predictive control algorithm that can give good realtime computation performance by utilizing the fact that some parameters needed for solving QP problems can be computed offline. Finally, we illustrate that the proposed method can give good realtime features by running the C-code application constructed using the proposed method on a microncontroller system.

Keywords

References

  1. http://hesperia.gsfc.nasa.gov/-schmahl/nnls/nnls.c
  2. A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulus, "The explicit solution of model predictive control via multiparametric quadratic programming," Proc. of American Control Conference, pp. 872-876, Chicago, Illinois, 2000.
  3. D. W. Clarke, C. Mohtadi, and P. S. Tuffs, "Generalize predictive control-part1. the basic algorithm," Automatica, vol. 23, no. 9, pp. 137-148, 1987. https://doi.org/10.1016/0005-1098(87)90087-2
  4. D. W. Clarke, C. Mohtadi, and P. S. Tuffs, "Generalized predictive control-part2. Extensions and interpretations," Automatica, vol. 23, no. 2, pp. 149-160, 1987. https://doi.org/10.1016/0005-1098(87)90088-4
  5. C. E. Garacia and A. M. Morshedi, "Quadratic programming solution of dynamic matrix control (QDMC)," Chemical Engineering Communications, vol. 46, pp. 73-87, 1986. https://doi.org/10.1080/00986448608911397
  6. A. N. Gundes, H. Ozbay, and A. B. Ozguler, "Pid controller synthesis for a class of unstable mimo plants with i/o delays," Automatica, vol. 43, no. 1, pp. 135-142, 2007. https://doi.org/10.1016/j.automatica.2006.08.009
  7. M. V. Kothare, V. Balakrishnan, and M. Morari, "Robust constrained model predictive control using linear matrix inequalities," Automatica, vol. 32, no. 10, pp. 1361-1379, 1996. https://doi.org/10.1016/0005-1098(96)00063-5
  8. K. I. Kouramas, N. P. Faisca, C. Panos, and E. N. Pistikopoulos, "Explicit/multi-parametric MPC (Model Predictive Control) of linear discrete-time systems by dynamic and multi-parametric programming," Automatica, vol. 47, pp. 1638-1645, 2011. https://doi.org/10.1016/j.automatica.2011.05.001
  9. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, New Jersey, 1974.
  10. J. H. Lee, M. Morari, and C. E. Garcia, "State-spave interpretation of model predictive control," Automatica, vol. 30, no. 4, pp. 707-717, 1994. https://doi.org/10.1016/0005-1098(94)90159-7
  11. P. Lundstrom, J. H. Lee, M. Morari, and S. Skogestad, "Limitations of dynamic matrix control," Computers Chemical Engineering, vol. 19, no. 4, pp. 409-421, 1995.
  12. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Plannery, "Numerical recipies in C," Cambridge University Press, Cambridge, 1988.
  13. P. Trondel, T. A. Johansen, and A. Bemporad, "An algorithm for multi-parametric quadratic programming and explicit mpc solutions." Automatica, vol. 39, no. 10, pp. 489-497, 2003. https://doi.org/10.1016/S0005-1098(02)00250-9

Cited by

  1. Development of a DMC Block for Use with an RCP System and its Application vol.21, pp.9, 2015, https://doi.org/10.5302/J.ICROS.2015.15.0086
  2. A Light-Weight Rapid Control Prototyping System Based on Open Source Hardware vol.5, pp.2169-3536, 2017, https://doi.org/10.1109/ACCESS.2017.2715184