DOI QR코드

DOI QR Code

Estimation on the Distribution Function for Coastal Air Temperature Data in Korean Coasts

한반도 연안 기온자료의 분포함수 추정

  • Jeong, Shin Taek (Department of Civil and Environmental Engineering, Wonkwang University) ;
  • Cho, Hongyeon (Marine Environments and Conservation Research Division, Korea Institute of Ocean Science and Technology) ;
  • Ko, Dong Hui (Department of Civil and Environmental Engineering, Wonkwang University) ;
  • Hwang, Jae Dong (Doosan Heavy Industries & Construction, Technology Strategy & Planning Team(Daejeon) Corporate R & D institute)
  • 정신택 (원광대학교 토목환경공학과, 원광대학교 부설 공업기술개발연구소) ;
  • 조홍연 (한국해양과학기술원, 해양환경보전연구부) ;
  • 고동휘 (원광대학교 토목환경공학과, 원광대학교 부설 공업기술개발연구소) ;
  • 황재동 (두산중공업)
  • Received : 2014.09.25
  • Accepted : 2014.10.16
  • Published : 2014.10.31

Abstract

Water temperature due to climate change can be estimated using the air temperature because the air and water temperatures are closely related and the water temperatures have been widely used as the indicators of the environmental and ecological changes. It is highly necessary to estimate the frequency distribution of the air and water temperatures, for the climate change derives the change of the coastal water temperatures. In this study, the distribution function of the air temperatures is estimated by using the long-term coastal air temperature data sets in Korea. The candidate distribution function is the bi-modal distribution function used in the previous studies, such as Cho et al.(2003) on tidal elevation data and Jeong et al.(2013) on the coastal water temperature data. The parameters of the function are optimally estimated based on the least square method. It shows that the optimal parameters are highly correlated to the basic statistical informations, such as mean, standard deviation, and skewness coefficient. The RMS error of the parameter estimation using statistical information ranges is about 5 %. In addition, the bimodal distribution fits good to the overall frequency pattern of the air temperature. However, it can be regarded as the limitations that the distribution shows some mismatch with the rapid decreasing pattern in the high-temperature region and the some small peaks.

연안 생태환경변화의 주요 지표로 이용되는 수온은 기온과 밀접한 상관관계가 있기 때문에 기온자료를 이용하여 기후변화에 따른 수온변화와 연안 생태환경변화를 추정할 수 있다. 기후변화는 기온 및 수온의 발생빈도 변화와 연안의 생태환경변화를 유발하기 때문에 기온과 수온의 발생 빈도분포 함수를 추정하는 연구가 필요하다. 본 연구에서는 우리나라 연안의 장기 기온자료를 이용하여 빈도분포함수를 추정하였다. 빈도분포 함수는 조위 분포함수 추정(Cho et al., 2003), 수온 분포함수 추정(Jeong et al., 2013) 등에 사용된 Bi-modal 형태의 분포함수를 이용 하였으며, 분포함수의 매개변수는 최소자승법으로 최적 추정하였다. 최적 추정된 매개변수는 기온자료의 기본적인 통계정보에 해당하는 평균, 표준편차, 왜도계수와 강한 상관관계를 보이고 있는 것으로 파악되었으며, 통계정보를 이용한 매개변수 추정공식의 RMS 오차는 5% 정도로 파악되었다. 한편 본 연구에서 제시하는 Bi-modal 분포함수는 전체적인 기온 분포양상을 적절하게 표현하고 있으나, 고온 영역의 급격한 빈도감소 양상 및 관측 자료의 분포에서 보이는 작은 첨두 재현에는 한계가 있는 것으로 파악되었다.

Keywords

References

  1. Cho, H.Y. and Lee, K. (2012). Development of an air-water temperature relationship model to predict climate-induced future water temperature in estuaries, J. of Environmental Engineering - ASCE, 138(5), pp.570-577. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000499
  2. Cho, H.Y., Jeong, S.T., and Oh, Y.M., (2004). Estimation of Probability Density Function of Tidal Elevation Data, Journal of Korean Society of Coastal and Ocean Engineers, Vol.16, No.3, pp. 152-161(in Korean).
  3. Cho, H.Y., Jeong, S.T., Lee K.-H., and Kim, T.H., (2010). Analysis of the Mean and Standard Deviation due to the Change of the Probability Density Function on Tidal Elevation Data, Journal of Korean Society of Coastal and Ocean Engineers, Vol.22, No.4, pp. 279-285(in Korean).
  4. Grace, W. and Curran, E. (1993). A binormal model of frequency distributions of daily maximum temperature, Aust. Met. Mag., 42, 151-161.
  5. Haldar, A. and Mahadevan, S., (2000). Probability, Reliability and Statistical Methods in Engineering Design, John-Wiley & Sons.
  6. Huang, Z-K. and Chau, K-W. (2008). A new Image Thresholding Method Based on the Gaussian Mixture Model, Applied Mathematics and Computation, 205(2), 899-907. https://doi.org/10.1016/j.amc.2008.05.130
  7. Intergovernmental Panel on Climate Change (IPCC). (2007). Climate change 2007: The physical science basis, Cambridge University Press, Cambridge, UK.
  8. Jeong, S.T., Cho, H.Y., and Ko D.H., (2012). Development of the Inter-tidal Exposure Duration Formulae Using Tidal Harmonic Constants, Journal of Korean Society of Coastal and Ocean Engineers, Vol.24, No.5, pp. 319-325(in Korean). https://doi.org/10.9765/KSCOE.2012.24.5.319
  9. Jeong, S.T., Cho, H.Y., Kim, J.D., and Ko D.H., (2008). Estimation of Probability Density Function of Tidal Elevation Data using the Double Truncation Method, Journal of Korean Society of Coastal and Ocean Engineers, Vol.20, No.3, pp. 247-254 (in Korean).
  10. Jeong, S.T., Cho, H.Y., Ko D.H., Oh N.S. and Son K.-P., (2013). Estimation of Probability Distribution Functions for Water Temperature Data in Korean Coasts, Journal of Korean Society of Coastal and Ocean Engineers, Vol.25, No.1, pp. 11-19(in Korean). https://doi.org/10.9765/KSCOE.2013.25.1.11
  11. Ko D.H., Jeong, S.T., and Cho, H.Y., (2013). Statistical Characteristics of Hourly Tidal Levels around the Korean Peninsula, Journal of Korean Society of Coastal and Ocean Engineers, Vol.25, No.6, pp. 365-373. https://doi.org/10.9765/KSCOE.2013.25.6.365
  12. Korea Meteorological Administration (2014), Homepage http://www.kma.go.kr (in Korean).
  13. Martinez, W.L., Martinez, A.R. and Solka, J.L.(2011). Exploratory Data Analysis with MATLAB, Chapter 9, Chapman & Hall/CRC.
  14. McCloy, J.M. and Dolan, R. (1973). Water-Air Temperature relationship along Coastal North Carolina, U.S.A., Geografiska Annaler: Series A, Physical Oceanography, 55(3), 117-121. https://doi.org/10.2307/520651
  15. Ministry of Maritime Affairs and Fisheries (2005). Harbor and fishery design criteria (in Korean).
  16. Nese, J.M. (1994). Systematic biases in manual observations of daily maximum and minimum temperature, J. of Climate, 7, 834-842. https://doi.org/10.1175/1520-0442(1994)007<0834:SBIMOO>2.0.CO;2
  17. Racine, S.R. (2008). Nonparametric Econometrics: A Primer, Foundations and Trendsin Econometrics, 3(1), 1-88. (2011.5.27. http://socserv.mcmaster.ca /racine/ECO0301.pdf)
  18. Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis, Monographs on Statistics and Applied Probability, Chapman & Hall.
  19. Storch, H.v. and Zwiers, F. W. (1999). Statistical Analysis in Climate Research, Cambridge Univ. Press.

Cited by

  1. Estimation and Comparative Analysis on the Distribution Functions of Air and Water Temperatures in Korean Coastal Seas vol.28, pp.3, 2016, https://doi.org/10.9765/KSCOE.2016.28.3.171