References
- Andre C, Froehlich JE, Moll MR, Benning C (2007) A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell 19:2006-2022 https://doi.org/10.1105/tpc.106.048629
- Andre C, Haslam RP, Shanklin J (2012) Feedback regulation of plastidic acetyl-coA carboxylase by 18:1-acyl carrier protein in Brassica napus. Proc Natl Acad Sci USA 109:10107-10112 https://doi.org/10.1073/pnas.1204604109
- Andrianov V, Borisjuk N, Pogrebnyak N, Brinker A, Dixon J, Spitsin S, Flynn J, Matyszczuk P, Andryszak K, Laurelli M, Golovkin M, Koprowski H (2010) Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol J 8:277-287 https://doi.org/10.1111/j.1467-7652.2009.00458.x
- Andriotis VM, Pike MJ, Schwarz SL, Rawsthorne S, Wang TL, Smith AM (2012) Altered starch turnover in the maternal plant has major effects on Arabidopsis fruit growth and seed composition. Plant Physiol 160:1175-1186 https://doi.org/10.1104/pp.112.205062
- Bates PD, Fatihi A, Snapp AR, Carlsson AS, Browse J, Lu C. (2012) Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. Plant Physiol 160:1530-1539 https://doi.org/10.1104/pp.112.204438
- Behal RH, Lin M, Back S, Oliver DJ (2002) Role of acetylcoenzyme a synthetase in leaves of Arabidopsis thaliana. Arch Biochem Biophys 402:259-267 https://doi.org/10.1016/S0003-9861(02)00086-3
- Bourgis F, Kilaru A, Cao X, Ngando-Ebongue GF, Drira N, Ohlrogge JB, Arondel V (2011) Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci USA 108:12527-12532 https://doi.org/10.1073/pnas.1106502108
- Cahoon EB, Shockey JM, Dietrich CR, Gidda SK, Mullen RT, Dyer JM (2007) Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux. Curr Opin Plant Biol 10:236-244 https://doi.org/10.1016/j.pbi.2007.04.005
- Cartwright BR, Goodman JM (2012) Seipin: from human disease to molecular mechanism. J Lipid Res 53:1042-1055 https://doi.org/10.1194/jlr.R023754
- Chang YM, Liu WY, Shih AC, Shen MN, Lu CH, Lu MY, Yang HW, Wang TY, Chen SC, Chen SM, Li WH, Ku MS (2012) Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol 160:165-177 https://doi.org/10.1104/pp.112.203810
- Chapman KD, Dyer JM, Mullen RT (2012) Biogenesis and functions of lipid droplets in plants: thematic review series: lipid droplet synthesis and metabolism: from yeast to man. J Lipid Res 53:215-226 https://doi.org/10.1194/jlr.R021436
- Chapman KD, Ohlrogge JB (2012) Compartmentation of triacylglycerol accumulation in plants. J Biol Chem 287:2288-2294 https://doi.org/10.1074/jbc.R111.290072
- Demartini DR, Jain R, Agrawal G, Thelen JJ (2011) Proteomic comparison of plastids from developing embryos and leaves of Brassica napus. J Proteome Res 10:2226-2237 https://doi.org/10.1021/pr101047y
- Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerol as feedstocks for the production of biofuels. Plant J 54:593-607 https://doi.org/10.1111/j.1365-313X.2008.03442.x
- Eastmond PJ, Rawsthorne S (2000) Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryos. Plant Physiol 122:767-774 https://doi.org/10.1104/pp.122.3.767
- FAO (2003) World Agriculture: Towards 2015/2030: An FAO prospective. http://www.fao.org/docrep/005/y4252e/y4252e05c.htm
- Fettke J, Fernie AR, Steup M (2012) Transitory starch and its degradation in higher plant cells, Starch: Origins, Structure and Metabolism. in: I. Tetlow (Ed.), Essential Rev Exp Biol 5:311-374
- Flugge UI, Hausler RE, Ludewig F, Gierth M (2011) The role of transporters in supplying energy to plant plastids. J Exp Bot 62:2381-2392 https://doi.org/10.1093/jxb/erq361
- Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P, Brautigam A, Weber AP, Izui K. (2011) A plastidial sodium-dependent pyruvate transporter. Nature 476:472-475 https://doi.org/10.1038/nature10250
- Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59:115-142 https://doi.org/10.1146/annurev.arplant.59.032607.092938
- Hernandez ML, Whitehead L, He Z, Gazda V, Gilday A, Kozhevnikova E, Vaistij FE, Larson TR, Graham IA (2012) A cytosolic acyltransferase contributes to triacylglycerol synthesis in sucrose-rescued Arabidopsis seed oil catabolism mutants. Plant Physiol 160:215-225 https://doi.org/10.1104/pp.112.201541
- Huffman SL, Harika RK, Eilander A, Osendarp SJ (2011) Essential fats: how do they affect growth and development of infants and young children in developing countries? A literature review. Matern Child Nutr 7:44-65 https://doi.org/10.1111/j.1740-8709.2011.00356.x
- Hutchings D, Rawsthorne S, Emes MJ (2005) Fatty acid synthesis and the oxidative pentose phosphate pathway in developing embryos of oilseed rape (Brassica napus L.). J Exp Bot 56:577-585 https://doi.org/10.1093/jxb/eri046
- James CN, Horn PJ, Case CR, Gidda SK, Zhang D, Mullen RT, Dyer JM, Anderson RG, Chapman KD (2010) Disruption of the Arabidopsis CGI-58 homologue produces chanarin-dorfman-like lipid droplet accumulation in plants. Proc Natl Acad Sci USA 107:17833-17838 https://doi.org/10.1073/pnas.0911359107
- Kaup MT, Froese CD, Thompson JE (2002) A role for diacylglycerol acyltransferase during leaf senescence. Plant Physiol. 129:1616-1626 https://doi.org/10.1104/pp.003087
- Kunz HH, Scharnewski M, Feussner K, Feussner I, Flugge UI, Fulda M, Gierth M (2009) The ABC transporter PXA1 and peroxisomal beta-oxidation are vital for metabolism in mature leaves of Arabidopsis during extended darkness. Plant Cell 21:2733-2749 https://doi.org/10.1105/tpc.108.064857
- Lin WL, Oliver DJ (2008) Role of triacylglycerols in leaves. Plant Sci 175:233-237 https://doi.org/10.1016/j.plantsci.2008.04.003
- Lippold F, vom Dorp K, Abraham M, Holzl G, Wewer V, Yilmaz JL, Lager I, Montandon C, Besagni C, Kessler F, Stymne S, Dormann P (2012) Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis. Plant Cell 24:2001-2014 https://doi.org/10.1105/tpc.112.095588
- Lu C, Napier JA, Clemente TE, Cahoon EB (2011) New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr Opin Biotechnol 22:252-259 https://doi.org/10.1016/j.copbio.2010.11.006
- Majeran W, Cai Y, Sun Q, van Wijk KJ (2005) Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics, Plant Cell 17:3111-3140 https://doi.org/10.1105/tpc.105.035519
- Murphy DJ (2012) The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249:541-585 https://doi.org/10.1007/s00709-011-0329-7
- Ohlrogge J, Browse J. (1995) Lipid biosynthesis. Plant Cell 7:957-970 https://doi.org/10.1105/tpc.7.7.957
- Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109-136 https://doi.org/10.1146/annurev.arplant.48.1.109
- Petrie JR, Vanhercke T, Shrestha P, El Tahchy A, White A, Zhou XR, Liu Q, Mansour MP, Nichols PD, Singh SP (2012) Recruiting a new substrate for triacylglycerol synthesis in plants: the monoacylglycerol acyltransferase pathway. PLOS ONE 7:e35214 https://doi.org/10.1371/journal.pone.0035214
- Prabhakar V, Lottgert T, Geimer S, Dormann P, Kruger S, Vijayakumar V, Schreiber L, Gobel C, Feussner K, Feussner I, Marin K, Staehr P, Bell K, Flugge UI, Hausler RE. (2010) Phosphoenolpyruvate provision to plastids is essential for gametophyte and sporophyte development in Arabidopsis thaliana. Plant Cell 22:2594-2617 https://doi.org/10.1105/tpc.109.073171
- Pracharoenwattana I, Cornah JE, Smith SM (2005) Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell 17:2037-2048 https://doi.org/10.1105/tpc.105.031856
- Rawsthorne S (2002) Carbon flux and fatty acid synthesis in plants. Prog Lipid Res 41:182-196 https://doi.org/10.1016/S0163-7827(01)00023-6
- Sanjaya, Durrett TP, Weise SE, Benning C (2011) Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis. Plant Biotechnol J 9:874-883 https://doi.org/10.1111/j.1467-7652.2011.00599.x
- Sanjaya, Miller R, Durrett TP, Kosma DK, Lydic TA, Muthan B, Koo AJ, Bukhman YV, Reid GE, Howe GA, Ohlrogge J, Benning C (2013) Altered lipid composition and enhanced nutritional value of Arabidopsis leaves following introduction of an algal diacylglycerol acyltransferase 2. Plant Cell 25:677-693 https://doi.org/10.1105/tpc.112.104752
- Schwender J, Hay JO (2012) Predictive modeling of biomass component tradeoffs in Brassica napus developing oilseeds based on in silico manipulation of storage metabolism. Plant Physiol 160:1218-1236 https://doi.org/10.1104/pp.112.203927
- Schwender J, Ohlrogge JB, Shachar-Hill Y (2003) A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos. J Biol Chem 278:29442-29453 https://doi.org/10.1074/jbc.M303432200
- Slocombe SP, Cornah J, Pinfield-Wells H, Soady K, Zhang Q, Gilday A, Dyer JM, Graham IA (2009) Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotechnol J 7:694-703 https://doi.org/10.1111/j.1467-7652.2009.00435.x
- Stitt M, Zeeman SC (2012) Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol 15:282-292 https://doi.org/10.1016/j.pbi.2012.03.016
- Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806-11811 https://doi.org/10.1073/pnas.201413498
- Tjellstrom H, Yang Z, Allen DK, Ohlrogge JB (2012) Rapid kinetic labeling of Arabidopsis cell suspension cultures: implications for models of lipid export from Plastids. Plant Physiol 158:601-611 https://doi.org/10.1104/pp.111.186122
- Troncoso-Ponce MA, Cao X, Yang Z, Ohlrogge JB (2013) Lipid turnover during senescence. Plant Sci 205-206:13-19 https://doi.org/10.1016/j.plantsci.2013.01.004
- Vanhercke T, El Tahchy A, Liu Q, Zhou XR, Shrestha P, Divi UK, Ral JP, Mansour MP, Nichols PD, James CN, Horn PJ, Chapman KD, Beaudoin F, Ruiz-Lopez N, Larkin PJ, de Feyter RC, Singh SP, Petrie JR (2014) Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol J 12:231-239 https://doi.org/10.1111/pbi.12131
- Wahlroos T, Soukka J, Denesyuk A, Wahlroos R, Korpela T, Kilby NJ (2003) Oleosin expression and trafficking during oil body biogenesis in tobacco leaf cells. Genesis 35:125-132 https://doi.org/10.1002/gene.10172
- Weber AP, Linka N (2011) Connecting the plastid: transporters of the plastid envelope and their role in linking plastidial with cytosolic metabolism. Annu Rev Plant Biol 62:53-77 https://doi.org/10.1146/annurev-arplant-042110-103903
- Weise SE, Aung K, Jarou ZJ, Mehrshahi P, Li Z, Hardy AC, Carr DJ, Sharkey TD. (2012) Engineering starch accumulation by manipulation of phosphate metabolism of starch. Plant Biotechnol J 10: 545-554 https://doi.org/10.1111/j.1467-7652.2012.00684.x
- Yang Z, Ohlrogge JB (2009) Turnover of fatty acids during natural senescence of Arabidopsis, brachypodium, and switchgrass and in Arabidopsis beta-oxidation mutants. Plant Physiol 150:1981-1989 https://doi.org/10.1104/pp.109.140491
- Zhang M, Fan J, Taylor DC, Ohlrogge JB (2009) DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 21:3885-3901 https://doi.org/10.1105/tpc.109.071795
- Zolman BK, Silva ID, Bartel B (2001) The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid betaoxidation. Plant Physiol 127:1266-1278 https://doi.org/10.1104/pp.010550