DOI QR코드

DOI QR Code

LASSO를 사용한 시간 지연 추정 알고리즘

Time Delay Estimation Using LASSO (Least Absolute Selection and Shrinkage Operator)

  • Lim, Jun-Seok (Sejong University Department of Electronic Engineering) ;
  • Pyeon, Yong-Guk (Gangwon Provincial University Department of Information and Communication) ;
  • Choi, Seok-Im (Korea Polytechnic Gangneung campus Department of Electronic Communication Engineering)
  • 투고 : 2014.06.29
  • 심사 : 2014.09.17
  • 발행 : 2014.10.31

초록

두 개 센서에 도래하는 신호 간의 시간 지연을 추정 방법에는 여러 가지가 존재한다. 그 중에서 채널 추정 기법을 기반으로 한 방법의 경우는 두 센서에 입력되는 서로 다른 신호간의 상대적인 지연을 채널의 임펄스 응답처럼 추정하도록 되어 있다. 이 경우에는 해당 채널의 특성이 희박 채널의 특성을 가지고 있다. 기존의 방법들은 채널의 희박성을 이용하지 못하고 있는 방법이 대부분이다. 본 논문에서는 채널의 희박성을 이용하기 위하여 희박신호 최적화 방법의 하나인 LASSO 최적화를 사용한 시간 지연 추정 방법을 제안한다. 제안한 방법을 기존의 방법과 비교하여, 백색 가우시안 신호원에서는 약 10dB 이상의 성능 개선 결과를 보이고, 유색 신호원에서도 갑자기 추정성능이 열하되는 현상이 없음을 보인다.

In decades, many researchers have studied the time delay estimation (TDE) method for the signals in the two different receivers. The channel estimation based TDE is one of the typical TDE methods. The channel estimation based TDE models the time delay between two receiving signals as an impulse response in a channel between two receivers. In general the impulse response becomes sparse. However, most conventional TDE algorithms cannot have utilized the sparsity. In this paper, we propose a TDE method taking the sparsity into consideration. The performance comparison shows that the proposed algorithm improves the estimation accuracy by 10 dB in the white gaussian source. In addition, even in the colored source, the proposed algorithm doesn't show the estimation threshold effect.

키워드

참고문헌

  1. H.-R. Park and J.-H. Shin, "Eigen-analysis based super-resolution time delay estimation algorithms for spread spectrum signals," J. KICS, vol. 38, no. 12, pp. 1013-1020, Dec. 2013. https://doi.org/10.7840/kics.2013.38A.12.1013
  2. J.-H. Shin, H.-R. Park, and E. Chang, "An ESPRIT-based super-resolution time delay estimation algorithm for real-time locating systems," J. KICS, vol. 38, no. 4, pp. 310-317, Apr. 2013. https://doi.org/10.7840/kics.2013.38A.4.310
  3. J.-H. Shin, S.-I. Myong, E. Chang, and H.-R. Park, "A super-resolution time delay estimation algorithm for spread spectrum signals," J. KICS, vol. 37, no. 2, pp. 119-127, Feb. 2012. https://doi.org/10.7840/KICS.2012.37A.2.119
  4. J. Lim and W. Hong, "An adaptive time delay estimation method based on canonical correlation analysis," J. Acoustic. Soc. Korea, vol. 32, no. 6, pp. 548-555, Nov. 2013. https://doi.org/10.7776/ASK.2013.32.6.548
  5. P. L. Feintuch, N. J. Bershad, and F. A. Reed, "Time delay estimation using the LMS adaptive lter-dynamic behaviour," IEEE Trans. Acoust. Speech Signal Process., vol. 29, no. 3, pp. 571-576, Mar. 1981. https://doi.org/10.1109/TASSP.1981.1163608
  6. K. C. Ho, Y. T. Chan, P. C. Ching, "Adaptive time-delay estimation in nonstationary signal and=or noise power environments," IEEE Trans. Signal Process., vol. 41, no. 7, pp. 2289-2299, Jul. 1993. https://doi.org/10.1109/78.224240
  7. H. C. So, P. C. Ching, and Y. T. Chan, "A new algorithm for explicit adaptation of time delay," IEEE Trans. Signal Process., vol. 42, no. 7, pp. 1816-1820, Jul. 1994. https://doi.org/10.1109/78.298289
  8. S. R. Dooley and A. K. Nandi, "Adaptive subsample time delay estimation using Lagrange interpolators," IEEE Signal Process. Lett., vol. 6, no. 3, pp. 65-57, Mar. 1999. https://doi.org/10.1109/97.744626
  9. B. Widrow and S.D. Stearn, Adaptive Signal Process., Prentice-Hall, Englewood, NJ, 1985.
  10. S. Kawamura and M. Hatori, "A TAP selection algorithm for adaptive filters," in Proc. ICASSP 1986, pp. 2979-2982, Tokyo, Japan, Apr. 1986.
  11. J. Homer, I. Mareels, R. R. Bitmead, B. Wahlberg, and A. Gustafsson, "LMS estimation via structural detection," IEEE Trans. Signal Process., vol. 46, no. 10, pp. 2651-2663, Oct. 1998. https://doi.org/10.1109/78.720368
  12. Y. Li, Y. Gu, and K. Tang, "Parallel NLMS filters with stochastic active taps and step-sizes for sparse system identification," in IEEE Int. Conf. ICASSP 2006, pp. III.109-III.112, Toulouse, France, May 2006.
  13. D. M. Etter, "Identification of sparse impulse response systems using an adaptive delay filter," in Proc. ICASSP 1985, pp. 1169-1172, Tampa, Florida, USA, Mar. 1985.
  14. M. Godavarti and A. O. Hero, "Partial update LMS algorithms," IEEE Trans. Signal Process., vol. 53, no. 7, pp. 2382-2399, Jul. 2005. https://doi.org/10.1109/TSP.2005.849167
  15. S. L. Gay, "An efficient, fast converging adaptive filter for network echocancellation," in Proc. Asilomar 1998, pp. 394-398. Pacific Grove, California, USA, Nov. 1998.
  16. D. L. Duttweiler, "Proportionate normalized least-mean-squares adaptation in echo cancelers," IEEE Trans. Speech and Audio Process., vol. 8, no. 5, pp. 508-518, Sept. 2000. https://doi.org/10.1109/89.861368
  17. R. Baraniuk, "Compressive sensing," IEEE Signal Process. Mag., vol. 25, no. 3, pp. 21-30, Mar. 2007.
  18. J. Lim and W. Hong, "Adaptive time delay estimation using l1 constraint," in Proc. Conf. Acoust. Soc. Korea, vol. 32, no. 1(s), pp. 272-275, Incheon, Korea, May 2013.
  19. R. Tibshirani, "Regression shrinkage and selection via the LASSO," J. Royal Statist. Soc. B, vol. 21, pp. 279-289, 1996.
  20. J. Benesty, "Adaptive eigenvalue decomposition algorithm for passive acoustic source localization," J. Acoust. Soc. Am., vol. 107, no. 1, pp. 384-391, Jan. 2000. https://doi.org/10.1121/1.428310
  21. H. Lee, S. Park, S. Park, "Introduction to compressive sensing," Mag. IEIE, vol. 38, no. 1, pp. 19-30, Jan. 2011.
  22. E. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006. https://doi.org/10.1109/TIT.2005.862083
  23. E. J. Candes and T. Tao, "Near optimal signal recovery from random projections: Universal encoding strategies?," IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5406- 5425, Dec. 2006. https://doi.org/10.1109/TIT.2006.885507
  24. E.J. Candes and J. Romberg(2006), l1 -magic: A Collection of MATLAB Routines for Solving the Convex Optimization Programs Central to Compressive Sampling Online, Available: www.acm.caltech.edu/l1magic/
  25. E. Candes and T. Tao, "The dantzig selector: Statistical estimation when p is much larger than n," Ann. Statist., vol. 35, no. 6, pp. 2313-2351, Dec. 2007. https://doi.org/10.1214/009053606000001523
  26. The MOSEK Optimization Tools Version 2.5. User's Manual and Reference, http://www.mosek.com, 2002.
  27. PDCO: Primal-Dual Interior Method for Convex Objectives, http://www.stanford.edu/gr oup/SOL/software/pdco.html, 2002
  28. SPGL1, a solver for large scale sparse reconstruction, http://www.cs.ubc.ca/labs/scl/spgl1/ 2008.
  29. G. C. Carter, Coherence and Time Delay Estimation: An Applied Tutorial for Research, Development, Test and Evaluation Engineers, NY: IEEE press, 1993.
  30. Y. Chen, Y. Gu, A. O. Hero III, "Sparse LMS for system identification," in Proc. ICASSP 2009, pp. 3125-3128, Taipei, Taiwan, Apr. 2009.