DOI QR코드

DOI QR Code

Cellular-Automata Based Node Scheduling Scheme for Wireless Sensor Networks

무선 센서 네트워크를 위한 셀룰러 오토마타 기반의 노드 스케줄링 제어

  • Byun, Heejung (Suwon University Department of Information & Telecommun. Engineering) ;
  • Shon, Sugook (Suwon University Department of Information & Telecommun. Engineering)
  • Received : 2014.08.18
  • Accepted : 2014.09.23
  • Published : 2014.10.31

Abstract

Wireless sensor networks (WSNs) generally consist of densely deployed sensor nodes that depend on batteries for energy. Having a large number of densely deployed sensor nodes causes energy waste and high redundancy in sensor data transmissions. The problems of power limitation and high redundancy in sensing coverage can be solved by appropriate scheduling of node activity among sensor nodes. In this paper, we propose a cellular automata based node scheduling algorithm for prolonging network lifetime with a balance of energy savings among nodes while achieving high coverage quality. Based on a cellular automata framework, we propose a new mathematical model for the node scheduling algorithm. The proposed algorithm uses local interaction based on environmental state signaling for making scheduling decisions. We analyze the system behavior and derive steady states of the proposed system. Simulation results show that the proposed algorithm outperforms existing protocols by providing energy balance with significant energy savings while maintaining sensing coverage quality.

무선 센서 네트워크는 일반적으로 에너지를 위해 배터리에 의존하는 밀집되게 배치된 센서 노드들로 구성된다. 이와 같이 여러 개로 밀집되게 배치된 센서 노드들은 에너지 낭비 및 센서 데이터의 높은 중복 전송을 야기한다. 상기 전원 관련 제약 및 높은 중복성과 같은 양자 문제는 센서 노드들 간의 적절한 노드 활동 스케줄링에 의해 해결될 수 있다. 본 논문에서는 우수한 커버리지 성능 보장 및 노드들 간 에너지 절약과 네트워크 수명의 연장을 위한 셀룰러 오토마타 (CA) 기반의 노드 스케줄링 알고리즘이 제안된다. 또한 CA 프레임워크에 기반하여 노드 스케줄링 알고리즘의 새로운 수학적 모델을 제안한다. 제안한 알고리즘은 스케줄링 결정을 위해 노드 내 지역 환경 조건의 변경 및 인접 노드들의 상태 정보를 이용한다. 본 논문은 제안한 방식을 적용한 시스템의 동작을 분석하고 시뮬레이션 결과를 통해 제안한 알고리즘이 센싱 커버리지 품질을 유지하면서 유의한 에너지 절약을 갖춘 에너지 균형을 보장함을 확인하였다.

Keywords

References

  1. A. Bachir, M. Dohler, T. Watteyne, and K. K. Leung, "MAC essentials for wireless sensor networks" IEEE Commun. Surveys & Tutorials, vol. 12, no. 2, pp. 222-248, 2010. https://doi.org/10.1109/SURV.2010.020510.00058
  2. S. C. Ergen and P. Varaiya, "PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks," IEEE Trans. Mobile Computing, vol. 5, no. 7, pp. 920-930, 2006. https://doi.org/10.1109/TMC.2006.100
  3. C. J. Merlin and W. B. Heinzelman, "Duty cycle control for low-power-listening MAC protocols," IEEE Trans. Mobile Computing, vol. 9, no. 11, pp. 1508-1521, 2010. https://doi.org/10.1109/TMC.2010.116
  4. X. Wang, X. Wang, G. Xing, and Y. Yao, "Dynamic duty cycle control for end-to-end delay guarantees in wireless sensor networks," Int. Workshop Quality of Service (IWQoS), pp. 1-9, Beijing, Jun. 2010.
  5. F. Dressler and O. B. Akan, "A survey on bio-inspired networking," J. Computer Networks, vol. 54, no. 6, pp. 881-900, Apr. 2010. https://doi.org/10.1016/j.comnet.2009.10.024
  6. T. Nakano, "Biologically inspired network systems: A review and future prospects," IEEE Trans. Systems, Man, and Cybernetics - Part C: Appl. and Rev., vol. 41, no. 5, pp. 630-643, 2011. https://doi.org/10.1109/TSMCC.2010.2090141
  7. S. Wolfram, "Universality and complexity in cellular automata," J. Physica D: Nonlinear Phenomena, vol. 10, no. 1-2, pp. 1-35, Jan. 1984. https://doi.org/10.1016/0167-2789(84)90245-8
  8. P. Sarkar, "A brief history of cellular automata," J. ACM Computing survey, vol. 32, no. 1, pp. 80-107, Mar. 2000. https://doi.org/10.1145/349194.349202
  9. A. Ilachinski, Cellular Automata: A Discrete Universe, World Scientific, 2001.
  10. S. Torbey, "Towards a framework for intuitive programming of cellular automata," M.S. Thesis, School of Computing, Queen's University, ON, Canada, 2007.
  11. W. Zhang, J. Yuan, Z. Yu, Z, Xu, and X. Shan, "Study of the global behavior of wireless sensor networks based on cellular automata," J. Physics, vol. 57, no. 11, pp. 6896-6900, 2008.
  12. W. Li, A. Y. Zomaya, and A. Al-Jumaliy, "Cellular automata based models of wireless sensor networks," in Proc. ACM Int. Symp. Mobility management and wireless access, pp. 1-6, 2009.
  13. Y. Baryshnikov, E. Coffman, and K. Kwak, "High performance sleep-wake sensor systems based on cyclic cellular automata," in Proc. Int. Conf. Inf. Process. in Sensor Networks, pp. 517-526, 2008.
  14. S. Adabi, A, Zadeh, A. Data, and S. Adabi, "Cellular automata based method for energy conservation solution in wireless sensor network," in Proc. Int. Conf. Wirel. Commun., Networking and Mobile Computing, pp. 1-5, 2008.
  15. I. Banerjee, S. Das, H. Rahaman, and B. Sikdar, "An energy efficient monitoring of ad-hoc sensor network with cellular automata," in Proc. Int. Conf. systems, man and cybernetics, vol. 6, pp. 5100-5105, 2006.
  16. R. O. Cunha, A. P. Silva, A. A. F. Loureiro, and L. B. Ruiz, "Simulating large wireless sensor networks using cellular automata," in Proc. 38th Annual Simulation Symp., pp. 323-330, 2005.
  17. F. Ye, G. Zhong, S. Lu, and L. Zhang, Energy efficient robust sensing coverage in large sensor networks, UCLA Technical Report, 2002.
  18. S. Athanassopoulos, C. Kaklamanis, P. Katsikouli, and E. Papaioannou, "Cellular automata for topology control in wireless sensor networks," in Proc. 16th IEEE Mediterranean Electrotechnical Conf., pp. 212-215, 2012.
  19. C. Cheng, C. K. Tse, and F. C. M. Lau, "A bio-inspired scheduling scheme for wireless sensor networks," in Proc. IEEE VTC, pp. 223-227, 2008.
  20. J. Son, S. Shon, and H. Byun, "Bio-inspired energy efficient node scheduling algorithm in wireless sensor networks," J. KICS, vol. 38A, no. 6, pp. 528-534, 2013. https://doi.org/10.7840/kics.2013.38A.6.528