DOI QR코드

DOI QR Code

Retransmission Persistence Management with ARQ in Multi-Hop Wireless Network

무선 멀티 홉 환경에서 ARQ를 통한 재전송 지속성 관리 기법

  • Oh, Bong-Hwan (Yonsei University, Department of Electrical and Electronic Engineering) ;
  • Kim, Seog-Gyu (Andong University, Department of Information Communication Engineering) ;
  • Lee, Jaiyong (Yonsei University, Department of Electrical and Electronic Engineering)
  • Received : 2014.09.03
  • Accepted : 2014.10.13
  • Published : 2014.10.31

Abstract

Multi-hop wireless networks has become common phenomenon according to a development of wireless communications and an increase of usage of wireless link. ARQ is one of the common protocols in link layer and can improve a link performance recovering packet loss in wireless link. However, ARQ cannot sufficient to assure a end-to-end performance because ARQ only manages the ARQ's own link. In this paper, we propose a new retransmission persistence for ARQ in multi-hop wireless network to satisfy the end-to-end performance. The proposed scheme can aware a bottleneck link according to the exchange of link information between ARQs and can support the end-to-end performance by managing a retransmission persistence. OPNET simulator is used to evaluate the performance of the proposed scheme and results show that proposed scheme can improve the end-to-end performance with satisfying a requirement of entire wireless section.

무선 통신 기술이 점점 발전함에 따라 이제는 하나의 전송 경로 안에 다중의 무선 구간이 존재하는 무선 멀티홉 환경이 점점 일반화 되고 있다. ARQ는 무선 구간에서 사용되는 가장 일반적인 프로토콜로서 무선 링크에서 발생하는 패킷 손실을 복구함으로써 무선 구간의 성능을 보장한다. 하지만 ARQ는 근원적으로 자신이 속한 무선링크의 성능만을 보장하기 때문에 다중의 무선 구간이 존재할 경우에는 전체 성능을 보장하는데 문제가 생길 수 있다. 따라서 본 논문에서는 무선 멀티 홉 환경에서 전체 전송 경로의 성능을 보장하기 위한 재전송 지속성 관리기법을 제안한다. 제안된 방법은 무선 멀티 홉 환경에서 ARQ간의 링크 정보 교환을 통해 ARQ 스스로 무선 병목링크를 인지하고 이에 따라 재전송 지속성을 조절함으로써 전체 성능을 보장한다. OPNET 시뮬레이터를 통해 제안된 방법이 전체 무선구간의 요구조건 안에서 전체 성능을 향상시키는 것을 확인 할 수 있었다.

Keywords

References

  1. C. F. Chiasserini and M. Meo, "Modeling interactions between link layer and transport layer in wireless networks," The 12th IEEE Int. Symp. PIMRC 2001, San Diego, USA, Sep. 2001.
  2. F. Vaciraca, A. D. Vendictis, and A. Baiocchi, "Investigating interactions between ARQ mechanisms and TCP over wireless links," in Proc. of European Wirel., Barcellona, Spain, Feb. 2004.
  3. A. Mehta, D. Kagaris, and R. Viswanathan, "Throughput performance of an adaptive ARQ scheme in rayleigh fading channels," IEEE Trans. Wirel. Commun., vol. 5, no. 1, Jan. 2006.
  4. C.F. Chiasserini and M. Meo, "A recon-gurable protocol setting to improve TCP over wireless," IEEE Trans. Veh. Technol., vol. 51, no. 6, Nov. 2002.
  5. J. J. Alcaraz, F. Cerdan, and J. Garcia-Haro, "Optimizing TCP and RLC interaction in the UMTS radio access network," IEEE Network, vol. 20, no. 2, Mar. 2006.
  6. J. G. Kim and M. M. Krunz, "Delay analysis of selective repeat ARQ for a markovian source over a wireless channel," IEEE Trans. Veh. Technol., vol. 49, no. 5, Sept. 2000.
  7. V. Subramanian, K. K. Ramakrishnan and S. Kalyanaraman, "Experimental study of link and transport protocols in interference-prone wireless LAN environments," IEEE COMSNETS, 2009.
  8. J. Han, B. Kim, and J. Lee. "TCP-friendly retransmission persistence management for SR-ARQ protocols," IEICE Trans. Commun., vol. E92-B, no. 10, pp. 3243-3246, Oct. 2009. https://doi.org/10.1587/transcom.E92.B.3243
  9. R. R. C. Bikram, N. Charbonneau, and V. M. Vokkarane, "Multi-layer loss recovery in TCP over optical burst-switched networks," Photonic Network Commun., vol. 21, no. 2, pp. 158-169, Apr. 2011. https://doi.org/10.1007/s11107-010-0290-y
  10. T. Issariyakul and E. Hossain, "Analysis of end-to-end performance in a multi-hop wireless network for different hop-level ARQ policies," IEEE GLOBECOM, vol. 5, pp. 3022-3026, Nov.-Dec. 2004.
  11. L. Long, E. Hossain, "An analytical model for ARQ cooperative diversity in multi-hop wireless networks," IEEE Trans. Wirel. Commun., vol. 7, no. 5, pp. 1786-1791, May 2008. https://doi.org/10.1109/TWC.2008.060798