DOI QR코드

DOI QR Code

동종네트워크 상에서 셀 소형화 간섭 완화 기법 및 성능 분석

Effect of Interference Mitigation Technique and Performance Analysis for Small Cell in Homogeneous Networks

  • Jang, Ye-Ok (Kyunghee University Department of Electronic Radio Engineering) ;
  • Cho, Eun-Hyung (Kyunghee University Department of Electronic Radio Engineering) ;
  • Hong, Een-Kee (Kyunghee University Department of Electronic Radio Engineering)
  • 투고 : 2014.06.16
  • 심사 : 2014.09.12
  • 발행 : 2014.10.31

초록

LTE/LTE-adv. 서비스 도입에 따라 높은 데이터 전송률을 요하는 다양한 서비스들이 제공되면서 모바일 트래픽은 더욱 가파르게 증가하고 있다. 이러한 트래픽 수요의 폭발적인 증가에 대응하기 위한 새로운 주요 기술로 소형셀 기술이 각광받고 있다. 소형셀 기술은 셀 반경을 현격히 줄여서 소형 기지국의 수를 증가시킴으로써 수용 가능한 트래픽 양을 늘릴 수 있다. 본 논문은 동종네트워크의 outdoor 환경에서 소형셀 도입에 따른 셀 치밀화(cell densification) 효과에 대해 셀 분할 효과와 단위 면적당 UE 수를 별도로 고려하여 SINR(Signal to Interference-Noise Ratio)과 UE(User Equipment)당 평균 수율 변화를 분석하였다. 또한 셀이 소형화되면 셀 간 간격이 좁아지면서 인접셀 간 간섭이 심화되어 SINR이 열화되기 때문에 본 논문은 간섭 제어가 적절하게 이루어졌을 때의 SINR 이득을 보임으로써 소형셀 환경에서의 간섭 제거 기법의 효과를 검증하였다.

As various services requiring high data rate are supported by introducing LTE/LTE-adv., mobile traffic increases rapidly. To cope with the continuous growth of traffic demand, small cell technology is considered as one of the most promising one. Small cell can increase system capacity by increasing the number of base stations with reduced cell radius. In this paper, we analyze the effect of cell densification with small cells in terms of SINR and average UE throughput considering cell split and the number of UE per unit area. As the cell becomes smaller, SINR degradation arises from high ICI(Inter Cell Interference) and we evaluate the effect of interference mitigation scheme in small cell environment where the proper interference mitigation technique is applied.

키워드

참고문헌

  1. T. Nakamura, S. Nagata, and A. Benjebbour, "Trends in Small Cell Enhancements in LTE Advanced," IEEE Commun. Mag., pp. 98-105, Feb. 2013
  2. E. Seidel, 3GPP LTE-A Standardisation in Release 12 and Beyond, Oct. 10, 2013, from http://www.nomor.de/home/technology/white-papers/lte-a-rel12-and-beyond
  3. 3GPP TR 36.872 v12.1.0, Small cell enhancements for E-UTRA and E-UTRAN Physical layer aspects, Dec. 2013.
  4. F. Richter and G. Fettweis, "Cellular mobile network densification utilizing micro base stations," in IEEE ICC 2010, pp. 1-6, Cape Town, Rep. of South Africa, May 2010.
  5. S. F. Yunas, T. Isotalo, J. Niemela, and M. Valkama, "Impact of macrocellular network densification on the capacity, energy and cost efficiency in dense urban environment," IJWMN, vol. 5, no. 5, pp. 99-118, Oct. 2013 https://doi.org/10.5121/ijwmn.2013.5507
  6. D. Lopez-Perez, I. Guvenc, G. de la Roche, M. Kountouris, T. Q. S. Quek, and Jie Zhang, "Enhanced intercell interference coordination challenges in heterogeneous networks," IEEE Wirel. Commun., vol. 18, no. 3, pp. 22-30, Jun. 2011.
  7. S. Kim, K. Kim, and E. Hong, "Analysis on interference control in heterogeneous networks," J. KICS, vol. 38A, no. 3, pp. 268- 276, 2013. https://doi.org/10.7840/kics.2013.38A.3.268
  8. W. Shin, W. Noh, K. Jang, and H.-H. Choi, "Hierarchical interference alignment for downlink heterogeneous networks," IEEE Trans. Wirel. Commun., vol. 11, no. 12, pp. 4549-4559, Dec. 2012. https://doi.org/10.1109/TWC.2012.101912.120421
  9. S. K. Sharma, S. Chatzinotas, and B. Ottersten, "Interference alignment for spectral coexistence of heterogeneous networks," EURASIP J. Wirel. Commun. Netw., vol. 46, Feb. 2013.
  10. ITU-R M.2135-1 : Guidelines for evaluation of radio interface technologies for IMTAdvanced., Dec. 2009
  11. IEEE 802.16m, Evaluation methodology document(EMD), Jul. 2008
  12. 3GPP TS 36.211 v12.0.0, E-UTRA; Physical channels and modulation(Release 10), Sept. 2011.
  13. 3GPP TR 36.912 v11.0.0, Feasibility study for Further Advancements for E-UTRA (LTEAdvanced), Sept. 2012
  14. V. J. Arokiamary, Mobile Communications, Technical Publications, 2009.
  15. M. Jo and Y. Byun, "New interference alignment technique using least square method in multi-user MIMO systems," J. KICS, vol. 37A, no. 6, pp. 488-496, 2012. https://doi.org/10.7840/KICS.2012.37.6A.488
  16. M. Saxena and H. Patel, "An efficient comparison ofmimo-ofdm detection using spatial multiplexing techniques," IJCER, vol. 3, no. 6, pp. 48-53, Jun. 2013.
  17. P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, "V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel," in URSI ISSSE, pp. 295-300, Pisa, Italia, Oct. 1998.
  18. N. I. Miridakis and D. D. Vergados, "A survey on the successive interference cancellation performance for single-antenna and multiple-antenna OFDM systems," IEEE Commun. Surveys Tutorials, vol. 15, no. 1, pp. 312-335, 2013. https://doi.org/10.1109/SURV.2012.030512.00103
  19. X. Hong, Z. Chen, C.-X. Wang, S. A. Vorobyov, and J. S. Thompson, "Interference cancelation and management techniques," IEEE Veh. Technol. Mag., vol. 4, no. 4, pp. 76-84, Dec. 2009.
  20. X. Zhang and M. Haenggi, The Performance of Successive Interference Cancellation in Random Wireless Networks, Retrieved Jul., 2, 2014, from http://arxiv.org/pdf/1402.15 57.pdf.
  21. 3GPP TS 36.212 v12.0.0, E-UTRA; Physical channels and modulation(Release 10), Sept. 2011.
  22. 3GPP TS 36.213 v12.0.0, E-UTRA; Physical channels and modulation(Release 10), Sept. 2011.
  23. Y. Jang, E. Cho, and E. Hong, "A study on the effect of interference mitigation technique and system performance in small cell environment," KICS ICC 2014, pp. 233-234, Yongpyong, Korea, Jan. 2014.