References
- Sarkar N., S. K. Ghosh, S. Bannerjee, and K. Aikat (2012) Bioethanol production from agricultural wastes: An overview. Renew Energy 37: 19-27. https://doi.org/10.1016/j.renene.2011.06.045
- Erdei B., B. Franko, M. Galbe, and G. Zacchi (2013) Glucose and xylose co-fermentation of pretreated wheat straw using mutants of S. cerevisiae TMB3400. J. Biotechnol. 164: 50-58. https://doi.org/10.1016/j.jbiotec.2012.12.003
- Tabka M. G., I. herpoel-Gimbert, F. Monod, M. Asther, and J. C. Sigoillot (2006) Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase, xylanase and feruloyl esterase treatment. Enzyme Microbiol. Technol. 39: 897-902. https://doi.org/10.1016/j.enzmictec.2006.01.021
- Xue Y., H. Jameel, R. Phillips, and H. M. Chang (2012) Split addition of enzymes in enzymatic hydrolysis at high solids concentration to increase sugar concentration for bioethanol production. Ind. Eng. Chem. 18: 707-714. https://doi.org/10.1016/j.jiec.2011.11.132
- Polizeli M. L. T. M., A. C. S. Rizzatti, R. Monti, H. F. Terenzi. J. A. Jorge, and D. S. Amorim (2005) Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591. https://doi.org/10.1007/s00253-005-1904-7
- Kulkarni N., A. Shendye, and M. Rao (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rew. 23: 411-456. https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
- Juturu V. and J. C. Wu (2012) Microbial xylanases: Engineering, production and industrial applications. Biotechnol. Adv. 30: 1219-1227. https://doi.org/10.1016/j.biotechadv.2011.11.006
- Collins T., C. Gerday, and G. Feller (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rew. 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
- Bajaj B. K. and K. Manhas (2012) Production and characterization of xylanase from Bacillus licheniformis P11(C) with potential for fruit juice and bakery industry. Biocatal. Agric. Biotechnol. 1: 330-337.
- Moon Y. H., B. C. Koo, Y. H. Choi, S. H. Ahn, S. T. Bark, Y. L. Cha, G. H. An, J. K. Kim, and S. J. Suh (2010) Development of 'Miscanthus' the promising bioenergy crop. Kor. J. Weed Sci. 30: 330-339. https://doi.org/10.5660/KJWS.2010.30.4.330
- An G. H., S. I. Lee, B. C. Koo, Y. H. Choi, Y. H. Moon, Y. L. Cha, S. T. Bark, J. K. Kim, B. C. Kim, and S. P. Kim (2011) The effects of application of solidified sewage sludge on the growth of bioenergy crops in reclaimed land. Korean J. Crop Sci. 56: 299-307. https://doi.org/10.7740/kjcs.2011.56.4.299
- An G. H., B. C. Koo, Y. H. Choi, Y. H. Moon, Y. L Cha, S. T. Bark, J. K. Kim, Y. M. Yoon, K. G. Park, and J. T. Kim (2012) The effect of solidified sewage sludge as a soil cover material for cultivation of bioenergy crops in reclaimed land. Korean J. Crop Sci. 57: 238-247. https://doi.org/10.7740/kjcs.2012.57.3.238
- Kang K. E., M. H. Han, S. K. Moon, H. W. Kang, Y. Kim, Y. L. Cha, and G. W. Choi (2013) Optimization of alkali-extrusion pretreatment with twin-screw for bioethanol production from Miscanthus. Fuel. 109: 520-526. https://doi.org/10.1016/j.fuel.2013.03.026
- Bajaj. B. K., Y. P. Khajuria, and V. P. Singh (2012) Agricultural residues as potential substrates for production of xylanase from alkali-thermotolerant bacterial isolate. Biocatal. Agric. Biotechnol. 1: 314-320.
- Ghose T. K. (1987) Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268.
- Selig, M., Weiss, N., and Y. Ji (2008) Enzymatic Saccharification of Lignocellulosic Biomass: Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory.
- Nagar S., A. Mittal, D. Kumar, and V. K. Gupta (2012) Production of alkali tolerant cellulase free xylanase in high levels by Bacillus pumilus SV-205. Int. J. Biol. Macromol. 50: 414-420. https://doi.org/10.1016/j.ijbiomac.2011.12.026
- Kapoor, M., L. M. Nair, and R. C. Kuhad (2008) Cost-effective xylanase production from free and immobilized Bacillus Pumilus strain MK001 and its application in saccharification of Prosopis juliflora. Biochem. Eng. J. 30: 88-97.
-
Degrassi G., A. Vindigni, and V. Venturi (2003) A thermostable
$\alpha$ - arabinofuranosidase from xylanolytic Bacillus pumilus; purification and characterisation. J. Biotechnol. 101: 69-79. https://doi.org/10.1016/S0168-1656(02)00304-8 - Sharma. D. C. and T. Satyanarayana (2006) A marked enhancement in the production of a highly alkaline and thermostable pectinase by Bacillus pumilus dcsr1 in submerged fermentation by using statistical methods. Bioresour. Technol. 97: 727-733. https://doi.org/10.1016/j.biortech.2005.04.012
- Guan, Z. B., C. M. Song, N. Zhang, W. Zhou, C. W. Xu, L. X. Zhou, H. Zhao, Y. J. Cai, and X. R. Liao (2014) Overexpression, characterization, and dye-decolorizing ability of a thermostable, pHstable, and organic solvent-tolerant laccase from Bacillus pumilus W3. J. Mol. Catal. B Enzym. 101: 1-6. https://doi.org/10.1016/j.molcatb.2013.11.009
- Asha Poorna. C. and P. Prema (2006) Production and partial characterization of endoxylanase by Bacillus pumilus using agro industrial residues. Biochem. Eng. J. 32: 106-112. https://doi.org/10.1016/j.bej.2006.09.016
- Nagar. S., A. Mittal, D. Kumar, and V. K. Gupta (2012) Production of alkali tolerant cellulase free xylanase in high levels by Bacillus pumilus SV-205. Int. J. Biol. Macromol. 50: 414-420. https://doi.org/10.1016/j.ijbiomac.2011.12.026
- Battan. B., J. Sharma, S. S. Dhiman, and R. C. Kuhad (2007) Enhanced production of cellulase-thermostble xylanase by Bacillus pumilus ASH and its potential application in paper industry. Enzyme Microb. Technol. 41: 733-739. https://doi.org/10.1016/j.enzmictec.2007.06.006