DOI QR코드

DOI QR Code

Economic Effects Analysis for Passenger Car's Idle Stop and Go Strategy: Focusing on Seoul Metropolitan Area

승용차 공회전제한장치 장착전략의 경제효과분석: 수도권 지역을 대상으로

  • Lee, Kyu Jin (TOD-based Sustainable City Transportation Research Center, Ajou University) ;
  • Jang, Jeong Ah (TOD-based Sustainable City Transportation Research Center, Ajou University) ;
  • Choi, Keechoo (Department of Transportation System Engineering, Ajou University) ;
  • Shim, Sang Woo (TOD-based Sustainable City Transportation Research Center, Ajou University)
  • 이규진 (아주대학교 TOD기반 지속가능 도시.교통연구센터) ;
  • 장정아 (아주대학교 TOD기반 지속가능 도시.교통연구센터) ;
  • 최기주 (아주대학교 교통시스템공학과) ;
  • 심상우 (아주대학교 TOD기반 지속가능 도시.교통연구센터)
  • Received : 2014.02.06
  • Accepted : 2014.05.25
  • Published : 2014.10.31

Abstract

The greenhouse gas emission generated by idling vehicles is a critical issue in the greenhouse gas reduction from the transportation sector. Recently, the mandatory application of the Idle Stop and Go (ISG) for buses, trucks and taxis is in the process of legislation. Focusing on the regulation is about to apply to passenger cars, this study analyzed the quantitative economic effects of the ISG installation by passenger car types in Seoul metropolitan area to support proper policy making. The benefit cost ratio of ISG installation on commercial passenger car of Seoul is the most effective, calculated as 8.55. Accordingly, the amount of 660 liters (per year per vehicle) of fuel and 1,606 kg (per year per vehicle) of $CO_2$ could be reduced. The results of this study might be used as an index for judgment of policy such as determining appropriate subsidy for ISG installation on passenger cars.

수송 분야의 온실가스 감축에서 차량운행 중 공회전에 따른 온실가스 발생 문제는 중요한 요소이므로 최근 버스, 트럭, 택시에서의 공회전제한장치(ISG) 장착이 법제화되고 있으며, 일반 승용차에도 ISG 장착을 확대하려는 추세이다. 이에 본 연구에서는 수도권 지역을 대상으로 승용차의 차종별 ISG 장착 전략에 따른 경제적 효과분석 결과를 기반으로 그에 따른 정책 방향성을 제시하고자 한다. 분석 결과, 서울시 사업용 승용차에 ISG를 장착하는 전략이 가장 효과적(B/C: 8.55)으로 나타났고, 그에 따른 연료절감량은 660(${\ell}$/년/대)이며, $CO_2$ 저감량은 1,606(kg/년/대)인 것으로 분석되었다. 이러한 결과는 향후 일반 승용차의 ISG 장착에 대한 적정 보조금 산정 등의 정책 판단 지표로 활용 가능할 것으로 판단된다.

Keywords

References

  1. Ahn K., Rakha H., Trani A., Van Aerde M. (2002), Estimating Vehicle Fuel Consumption and Emissions Based on Instantaneous Speed and Acceleration Levels, J. Transp. Eng., 128(2), 182-190. https://doi.org/10.1061/(ASCE)0733-947X(2002)128:2(182)
  2. Akcelik R., Bayley C., Bowyer D. P., Biggs D. C. (1983), A Hierarchy of Vehicle Fuel Consumption Models, Traffic Eng. Control, 24(10), 491-495.
  3. Biggs D. C., Akcelik R. (1986), An Energy-related Model of Instantaneous Fuel Consumption, Traffic Eng. Control, 27(6), 320-325.
  4. Choi G. N., Cho G. B., Jeong D. S. (2002), A Comparison Study of Fuel Consumption and Emissions for Engine Idling and During Startup, The Korean Soc. Automot. Eng., The 2002 Conference of Korea Society of Automotive Engineers, Korea.
  5. Hong S. T., Lee B. H., Lee D. Y., Shim M. G., Rim J. M. (2010), An Analysis of Idling Stop Time Using Real On-road Driving Data, J. Korean Soc. Transp., 28(1), Korean Society of Transportation, 25-28.
  6. Iiyama (1996), Direct Injection Gasoline Engines, Wayne University.
  7. Jeong D. S. (2003), A Study of Fuel Consumption According to the Engine Idling, A Workshop for Supply Activation of Small Car, Korean Society of Automotive Engineers, 23-40.
  8. Kim Y. T., Lee H. K., Kang J. H., Han S. B., Chung Y. J. (2008), Relationship Between $CO_{2}$ Emission and Fuel Consumption Rate According to Used Fuels at Driving Mode., J. Energy Eng., 17(4), 227-232.
  9. Korea Transportation Safety Authority (2012), 2010 Report on the Actual Condition of Vehicle Kilometer Travelled.
  10. Lee K. J., Choi K. C. (2013), Social Cost Comparison of Air-Quality based on Various Traffic Assignment Frameworks, J. Korean Soc. Civ. Eng., 33(3), 1087-1094. https://doi.org/10.12652/Ksce.2013.33.3.1087
  11. Lindsay Brooke (2008), High-valve Hybrids, AEI, 25-27.
  12. Lyu Y. S., Ryu J. H., Jeon M. S., Kim D. W., Jung S. W., Kim S. M., Eom M. D., Kim J. C. (2006), A Study on Characteristics of Carbon Dioxide Emissions from Passenger Cars, J. Korean Soc. Atmospheric Environ., 22(4), 451-458.
  13. Ministry of Environment (2011), Evaluation Result of Pilot Project for Idle Stop and Go.
  14. Montazeri-Gh M., Fotouhi A. (2011), Traffic Condition Recognition Using the Means Clustering Method, Scientia Iranica, 18(4B), 930-937. https://doi.org/10.1016/j.scient.2011.07.004
  15. Post K., Kent J. H., Tomlin J., Carruthers N. (1984), Fuel Consumption and Emission Modelling by Power Demand and a Comparison with other Models, Transp. Res. Part A, 18(3), 191-213. https://doi.org/10.1016/0191-2607(84)90126-2
  16. Rakha H., Medina A., Sin H., Dion F., Van Aerde M., Jenq J. (2000), Field Evaluation of Efficiency, Energy, Environmental and Safety Impacts of Traffic Signal Coordination across Jurisdictional Boundaries, Transp. Res. Rec., 1727, 42-51. https://doi.org/10.3141/1727-06
  17. Rakha H., Van Aerde M., Ahn K., Trani A. (2000), Requirements for Evaluation of Environmental Impacts of Intelligent Transportation Systems Using Speed and Acceleration Data, Transp. Res. Rec. 1738, 56-67. https://doi.org/10.3141/1738-07
  18. Saito A., Ueki S., Nagatomi Y., Sawazu N., Takada Y. (2008), Analysis of $CO_{2}$ Reduction Mechanism by Eco-driving with Light Duty Diesel Freight Vehicle in Real Traffic Conditions, SAE Technical Pap., 2008-01-1304.
  19. Shim M. K., Rim J. M., Lee B. H., Hong S. T., Lee D. Y. (2009), Estimation of $CO_{2}$ Reduction by Applying Idling Stop to In-use Vehicles, J. Korean Soc. Mechanical Eng. Part B, 33(10), 748-756. https://doi.org/10.3795/KSME-B.2009.33.10.748
  20. Son M. H., Park G. H., Son S. W. (2009), The Technology Trend of Stop-start Systems, Electronics and Telecommun Trends, 24(5), 52-61.
  21. Taniguchi M., Sato F. (2003), The Effect of Idling Stop at Red Light for Fuel Saving from the Data of the Field Test, Society of Automot. Engineers of Jpn.

Cited by

  1. 교통온실가스 감축정책의 효과분석 방법론 연구 vol.36, pp.1, 2018, https://doi.org/10.7470/jkst.2018.36.1.001