DOI QR코드

DOI QR Code

저가 3차원 빔 조향을 위한 단일급전 마이크로스트립 기생배열 안테나

A Single-Fed Microstrip Parasitic Array Antenna for Low-Cost Three-Dimensional Beam Steering

  • 김영구 (한국전자통신연구원 사업화본부) ;
  • 김태홍 (한국전자통신연구원 사업화본부)
  • 투고 : 2014.09.15
  • 심사 : 2014.10.10
  • 발행 : 2014.10.31

초록

본 논문에서는 5.8GHz ISM 대역(5.725GHz~5.825GHz)의 저가 3차원 빔 조향을 위한 단일급전 마이크로스트립 기생 배열 안테나를 설계 및 제작하였다. 안테나는 단일 급전 능동소자와 가변 리액턴스 부하를 갖는 4개의 기생소자로 구성된다. 제작된 안테나의 빔 조향 범위는 가변 리액턴스 부하의 조절에 의해 방위각 ${\Phi}=0^{\circ}$, ${\Phi}=45^{\circ}$, ${\Phi}=90^{\circ}$, ${\Phi}=135^{\circ}$에서 ${\pm}28^{\circ}$의 3차원 빔 조향을 이룰 수 있었다. 빔 조향 범위 내에서 안테나의 최대이득은 7.23dBi~9.36dBi를 가지고, -10dB 이하 반사손실대역폭은 빔 조향각도에 상관없이 항상 5.8GHz ISM 대역을 포함하였다.

In this paper, the single-fed microstrip parasitic array antenna for low-cost three-dimensional beam steering in 5.8GHz ISM(5.725GHz~5.825GHz) band is designed and implemented. The antenna is comprised of one feed active element and four passive elements with variable reactance loads. The beam steering range of implemented antenna is achieved three-dimensional beam steering of ${\pm}28^{\circ}$ at azimuth angle ${\Phi}=0^{\circ}$, ${\Phi}=45^{\circ}$, ${\Phi}=90^{\circ}$, and ${\Phi}=135^{\circ}$ by adjusting variable reactance loads. The maximum gain of the antenna in the beam steering range have within 7.23dBi~9.36dBi and the bandwidth of return loss lower than -10dB covers 5.8GHz ISM band regardless of the beam steering angles.

키워드

참고문헌

  1. A. O. Boukalov and S. G. Haggman, "System aspects of smart-antenna technology in cellular wireless communications - an overview," IEEE Trans. Microwave Theory and Tech., Vol. 48, pp. 919-929, June. 2000. https://doi.org/10.1109/22.846718
  2. M. Chryssomallis, "Smart antennas," IEEE Antennas and Propagation Magazine, Vol. 42, pp. 129-136, June. 2000. https://doi.org/10.1109/74.848965
  3. R. Vaughan, "Switched parasitic elements for antenna diversity," IEEE Trans. Antennas Propagat., Vol. 47, No. 2, pp. 399-405, Feb. 1999. https://doi.org/10.1109/8.761082
  4. H. Steyskal, "Digital beamforming antennas-An introduction," Microwave J, Vol. 30, pp. 107-124, Jan. 1987.
  5. H. Steyskal and J. F. Rose, "Digital beamforming for radar systems," Microwave J, Vol. 32, No. 1, pp. 121-136, Jan. 1989.
  6. Robert J. Mailloux, Phased Array Antenna Handbook, Artech house, 1994.
  7. Hubregt J. Visser, Array and Phased Array Antennas Basics. John Wiley & Sons, 2005.
  8. Y. Yusuf and X. Gong, "A low-cost patch antenna phased array with analog beam steering using mutual coupling and reactive loading", IEEE Trans. Antennas Wireless Propag. Lett., Vol. 7, pp. 81-84, 2008. https://doi.org/10.1109/LAWP.2008.916689
  9. M. Yassir, Y. Kimura, and M.Haneishi, "A consideration on a beam adjustable microstrip array antenna," in Proc. IEEE Asia-Pacific Microwave Conference., pp. 343-346, Dec. 2006.
  10. S.G. Lim and D. S. Kang, "BER performance analysis by angle spreading effect in the DoA estimation and beam-forming using 3D phase array antenna," JIIBC, Vol. 9, No. 2, pp. 137-144, 2009.
  11. C. Y. Lee, Y. J. Kim and C. W. Jung, "3-D Beam Steering Antenna for Intelligent Beam- reconfigurable System", JKAIS, Vol. 13, No. 10, pp. 4773-4779, 2012. https://doi.org/10.5762/KAIS.2012.13.10.4773
  12. Y. G. Kim, T. H. Kim, and I. G. Choi, "ESPAR(Electronically Steerable Parasitic Array Radiator) Antenna Composed of Circular Microstrip Patch," in Proc. KICS Summer Conf., pp. 2009-2010, Jeju Island, Korea, June 2009.