참고문헌
- Babar IA, Cheng CJ, Booth CJ, et al (2012). Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci USA, 109, 1695-704. https://doi.org/10.1073/pnas.1201516109
- Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281-97. https://doi.org/10.1016/S0092-8674(04)00045-5
- Bartel DP (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215-33. https://doi.org/10.1016/j.cell.2009.01.002
- Blow MJ, Grocock RJ, van Dongen S, et al (2006). RNA editing of human microRNAs. Genome biology, 7, 27. https://doi.org/10.1186/gb-2006-7-4-r27
- Concepcion CP, Bonetti C, Ventura A (2012). The microRNA-17-92 family of microRNA clusters in development and disease. Cancer J, 18, 262-7. https://doi.org/10.1097/PPO.0b013e318258b60a
- Corsten MF, Papageorgiou A, Verhesen W, et al (2012). MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis. Circulation Res, 111, 415-25. https://doi.org/10.1161/CIRCRESAHA.112.267443
- Croce CM (2008). Oncogenes and cancer. N Engl J Med, 358, 502-11. https://doi.org/10.1056/NEJMra072367
- Darty K, Denise A, Ponty Y (2009). VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics, 25, 1974. https://doi.org/10.1093/bioinformatics/btp250
-
Das R, Xu S, Quan X, et al (2014). Upregulation of mitochondrial Nox4 mediates TGF-
$\beta$ -induced apoptosis in cultured mouse podocytes. Am J Physiol Renal Physio, 306, 155-67. https://doi.org/10.1152/ajprenal.00438.2013 - de Wit E, Linsen SE, Cuppen E, Berezikov E (2009). Repertoire and evolution of miRNA genes in four divergent nematode species. Genome Res, 19, 2064-74. https://doi.org/10.1101/gr.093781.109
- Elton TS, Selemon H, Elton SM, Parinandi NL (2013). Regulation of the MIR155 host gene in physiological and pathological processes. Gene, 532, 1-12. https://doi.org/10.1016/j.gene.2012.12.009
- Farooqi AA, Qureshi MZ, Coskunpinar E, et al (2014). miR-421, miR-155 and miR-650: emerging trends of regulation of cancer and apoptosis. Asian Pac J Cancer Prev, 15, 1909-12. https://doi.org/10.7314/APJCP.2014.15.5.1909
- Griffiths-Jones S, Hui JH, Marco A, Ronshaugen M (2011). MicroRNA evolution by arm switching. EMBO Rep, 12, 172-7. https://doi.org/10.1038/embor.2010.191
- Grimson A, Srivastava M, Fahey B, et al (2008). Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature, 455, 1193-7. https://doi.org/10.1038/nature07415
- Guddeti S, De Chun ZHANG ALL, LESEBERG C H, et al (2005). Molecular evolution of the rice miR395 gene family. Cell Res, 15, 631-8. https://doi.org/10.1038/sj.cr.7290333
- Hertel J, Bartschat S, Wintsche A, et al (2012). Evolution of the let-7 microRNA Family. RNA biology, 9, 231-41. https://doi.org/10.4161/rna.18974
- Hsu SD, Lin FM, Wu WY, et al (2011). miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res, 39, 163-9. https://doi.org/10.1093/nar/gkq1107
- Hu H Y, He L, Fominykh K, et al (2012). Evolution of the humanspecific microRNA miR-941. Nature Communications, 3, 1145. https://doi.org/10.1038/ncomms2146
- Kinsella RJ, Kähäri A, Haider S, et al (2011). Ensembl BioMarts:a hub for data retrieval across taxonomic space. Database, 2011, 30.
- Kozomara A, Griffiths-Jones S (2011). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res, 39, 152-7.
- Landthaler M, Yalcin A, Tuschl T (2004). The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol, 14, 2162-7. https://doi.org/10.1016/j.cub.2004.11.001
- Larkin M, Blackshields G, Brown N, et al (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-8. https://doi.org/10.1093/bioinformatics/btm404
- Lewis BP, Shih IH, Jones-Rhoades MW, et al (2003). Prediction of mammalian microRNA targets. Cell, 115, 787-98. https://doi.org/10.1016/S0092-8674(03)01018-3
- Liang T, Guo L, Liu C (2012). Genome-wide analysis of mir-548 gene family reveals evolutionary and functional implications. J Biomed Biotechnol, 2012, 679563
-
Louafi F, Martinez-Nunez RT, Sanchez-Elsner T (2010). MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-
$\beta$ . J Biol Chem, 285, 41328-36. https://doi.org/10.1074/jbc.M110.146852 - MacRae IJ, Zhou K, Li F, et al (2006). Structural basis for doublestranded RNA processing by Dicer. Science, 311, 195-8. https://doi.org/10.1126/science.1121638
- Maher C, Stein L, Ware D (2006). Evolution of Arabidopsis microRNA families through duplication events. Genome research, 16, 510-9. https://doi.org/10.1101/gr.4680506
- Marco A, Hooks K, Griffiths-Jones S (2012a). Evolution and function of the extended miR-2 microRNA family. RNA biology, 9, 242-8. https://doi.org/10.4161/rna.19160
- Marco A, Hui JH, Ronshaugen M, Griffiths-Jones S (2010). Functional shifts in insect microRNA evolution. Genome Biol Evol, 2, 686.
- Marco A, MacPherson JI, Ronshaugen M, Griffiths-Jones S (2012b). MicroRNAs from the same precursor have different targeting properties. Silence, 3, 8-. https://doi.org/10.1186/1758-907X-3-8
- Marco A, Ninova M, Ronshaugen M, Griffiths-Jones S (2013). Clusters of microRNAs emerge by new hairpins in existing transcripts. Nucleic Acids Res, 41, 7745-52. https://doi.org/10.1093/nar/gkt534
- Mattiske S, Suetani RJ, Neilsen PM, Callen DF (2012). The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomarkers Prev, 21, 1236-43. https://doi.org/10.1158/1055-9965.EPI-12-0173
- Nahvi A, Shoemaker CJ, Green R (2009). An expanded seed sequence definition accounts for full regulation of the hid 3' UTR by bantam miRNA. RNA, 15, 814-22. https://doi.org/10.1261/rna.1565109
- O'Connell RM, Chaudhuri AA, Rao D S, Baltimore D (2009). Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA, 106, 7113-8. https://doi.org/10.1073/pnas.0902636106
- O'Connell RM, Rao DS, Baltimore D (2012). microRNA regulation of inflammatory responses. Annu Rev Immuno 30, 295-312. https://doi.org/10.1146/annurev-immunol-020711-075013
- Prasad TK, Goel R, Kandasamy K, et al (2009). Human protein reference database-2009 update. Nucleic Acids res, 37, 767-72. https://doi.org/10.1093/nar/gkn892
- Price N, Cartwright RA, Sabath N, et al (2011). Neutral evolution of robustness in Drosophila microRNA precursors. Mol Biol Evol, 28, 2115-23. https://doi.org/10.1093/molbev/msr029
- Pritchard CC, Cheng HH, Tewari M (2012). MicroRNA profiling: approaches and considerations. Nat Rev Gene, 13, 358-69. https://doi.org/10.1038/nrg3198
- Schwarz D S, Hutvagner G, Du T, et al (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115, 199-208. https://doi.org/10.1016/S0092-8674(03)00759-1
- Smoot ME, Ono K, Ruscheinski J, et al (2011). Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27, 431-2. https://doi.org/10.1093/bioinformatics/btq675
- Tamura K, Dudley J, Nei M, Kumar S (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 24, 1596-9. https://doi.org/10.1093/molbev/msm092
- Vargova K, Curik N, Burda P, et al (2011). MYB transcriptionally regulates the miR-155 host gene in chronic lymphocytic leukemia. Blood, 117, 3816-25. https://doi.org/10.1182/blood-2010-05-285064
- Vigorito E, Kohlhaas S, Lu D, Leyland R (2013). miR-155: an ancient regulator of the immune system. Immunological reviews, 253, 146-57. https://doi.org/10.1111/imr.12057
- Wang L, Toomey N L, Diaz L A, et al (2011). Oncogenic IRFs provide a survival advantage for Epstein-Barr virus-or human T-cell leukemia virus type 1-transformed cells through induction of BIC expression. J Virol, 85, 8328-37. https://doi.org/10.1128/JVI.00570-11
- Wang X (2008). miRDB: a microRNA target prediction and functional annotation database with a wiki interface. Rna, 14, 1012-7. https://doi.org/10.1261/rna.965408
- Wheeler BM, Heimberg AM, Moy VN, et al (2009). The deep evolution of metazoan microRNAs. Evol Dev, 11, 50-68. https://doi.org/10.1111/j.1525-142X.2008.00302.x
- Wienholds E, Kloosterman WP, Miska E, et al (2005). MicroRNA expression in zebrafish embryonic development. Science, 309, 310-1. https://doi.org/10.1126/science.1114519
- Xiao F, Zuo Z, Cai G, et al (2009). miRecords: an integrated resource for microRNA–target interactions. Nucleic Acids Res, 37, 105-10.
- Xu L, Dai WQ, Xu XF, et al (2012). Effects of multiple-target antimicroRNA antisense oligodeoxyribonucleotides on proliferation and migration of gastric cancer cells. Asian Pac J Cancer Prev, 13, 3203-7. https://doi.org/10.7314/APJCP.2012.13.7.3203
- Yi R, Qin Y, Macara I G, Cullen B R (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 17, 3011-6. https://doi.org/10.1101/gad.1158803
- Zhang H, Kolb F A, Jaskiewicz L, et al (2004). Single processing center models for human Dicer and bacterial RNase III. Cell, 118, 57-68. https://doi.org/10.1016/j.cell.2004.06.017
- Zhang J, Haider S, Baran J, et al (2011). BioMart: a data federation framework for large collaborative projects. Database, 2011, 38.
- Zheng SR, Guo GL, Zhai Q, et al (2013). Effects of miR-155 antisense oligonucleotide on breast carcinoma cell line MDA-MB-157 and implanted tumors. Asian Pac J Cancer Prev, 14, 2361-6. https://doi.org/10.7314/APJCP.2013.14.4.2361
- Liu ZY, Zhang GL, Wang MM, Xiong YN, Cui HQ (2011). MicroRNA-663 targets TGFB1 and regulates lung cancer proliferation. Asian Pac J Cancer Pre, 12, 2819-23.
- Zuker M (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 31, 3406-15. https://doi.org/10.1093/nar/gkg595
피인용 문헌
- Evolution of Fish Let-7 MicroRNAs and Their Expression Correlated to Growth Development in Blunt Snout Bream vol.18, pp.3, 2017, https://doi.org/10.3390/ijms18030646
- Simultaneous downregulation of miR-21 and miR-155 through oleuropein for breast cancer prevention and therapy vol.119, pp.9, 2018, https://doi.org/10.1002/jcb.26754
- Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma pp.00071048, 2018, https://doi.org/10.1111/bjh.15547