DOI QR코드

DOI QR Code

Effects of Calcium Citrate Isolated from Oyster Shell on Papain-induced Osteoarthritis in C57BL/6J Mice

굴 패각 구연산칼슘이 Papain으로 유도된 골관절염 C57BL/6J Mice에 미치는 영향

  • Choi, Eun-Young (Department of Food Science and Nutrition, Pusan National University) ;
  • Kim, Hak-Ju (Seojin Biotech Co., Ltd.) ;
  • Han, Ji-Sook (Department of Food Science and Nutrition, Pusan National University)
  • Received : 2014.06.16
  • Accepted : 2014.07.17
  • Published : 2014.10.31

Abstract

This study investigated the effects of calcium citrate on papain-induced osteoarthritis in C57BL/6J mice. Osteoarthritis was induced by injecting $6{\mu}L$ of papain into the knee joints of mice. Calcium citrate was made by crushing the centrifuged precipitate after reacting 0.5 M citric acid with 1 kg of oyster shell extract. The mice were divided into five groups (n=8). The normal group was untreated, whereas the papain group was induced to have osteoarthritis and treated with $200{\mu}L$ of water per day. The papain+DS group was treated with diclofenac sodium. The papain+calcium citrate groups were treated with calcium citrate at 150 and 300 mg/kg/bw for 28 days. Proteoglycan contents in articular cartilages were measured by safranin O/fast green staining and hematoxylin & eosin staining. Histopathological changes in cartilages were analyzed by the Rudolphi score approach. Contents of pro-inflammatory cytokines including TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 in plasma, were measured by the ELISA method. Body weights among the treated groups were not significantly different compared with that of the normal group. Cartilage loss and joint instability in the calcium citrate group improved significantly (P<0.05) in a dose-dependent manner compared with the papain group. Further, proteoglycan content of the calcium citrate group was considerably (P<0.05) higher than that of the papain group. Osteoarthritis scores in the calcium citrate group were considerably (P<0.05) reduced compared with the papain group. In the group treated with calcium citrate, contents of TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 in plasma were significantly (P<0.05) reduced in a dose-dependent manner in comparison with the normal group. Based on these results, we suggest that calcium citrate is effective for treatment of osteoarthritis.

본 연구에서는 구연산칼슘 투여가 papain으로 유도된 골관절염 동물모델에 미치는 영향을 살펴보았다. 8주령의 C57 BL/6J 마우스의 우측 슬관절강에 papain $6{\mu}L$를 투여하여 골관절염을 유발하였다. 실험군은 각 군당 8마리씩 체중이 고르게 배정하여 총 5군으로 나누었다. 정상군은 우측 슬관절강에 생리식염수 $6{\mu}L$를 주사하였고, 대조군, 약물투여군, 구연산칼슘 투여군은 papain $6{\mu}L$로 골관절염을 유발하였다. 정상군과 대조군은 0.2 mL의 생리식염수를, 약물투여군은 diclofenac sodium 2 mg/kg/bw를, 구연산칼슘 투여군은 150, 300 mg/kg/bw를 28일간 1일 매일 정해진 시간에 1회 경구 투여하였다. 실험기간 동안 체중을 측정하였으며, 실험 종료일에는 부검하여 슬관절의 병리조직학적 관찰을 하였고 관절연골 내 proteoglycan 함유율, 골관절염 지수의 변화, 혈액 내 TNF-${\alpha}$, IL-$1{\beta}$, IL-6 함량을 측정하였다. 체중은 실험기간 동안 모든 개체 간의 유의적인 차이는 없었다. 혈액 내 TNF-${\alpha}$, IL-$1{\beta}$, IL-6 함량은 papain 투여 대조군이 정상군에 비해 유의적으로 증가하였으며 약물 및 구연산칼슘 투여군은 대조군보다 유의성 있게 낮았다. 관절연골 내 proteoglycan의 함유율은 약물 및 구연산칼슘 투여군이 papain 투여 대조군보다 유의성 있게 높았다. Hematoxylin과 eosin 염색 관찰 결과, 골관절염이 유발된 마우스에 구연산칼슘을 경구 투여하였더니 관절연골의 파괴와 골 침식 등 연골의 변성이 약물 투여군과 유사하게 나타났다. 이와 같은 결과는 구연산칼슘이 papain으로 유도된 골관절염에서 연골의 변성을 줄이고 염증을 억제함으로써 골관절염 치료에 효과가 있은 것으로 사료되며, 추후 더 자세한 연구가 필요하다.

Keywords

References

  1. Wearing SC, Hennig EM, Byrne NM, Steele JR, Hills AP. 2006. Musculoskeletal disorders associated with obesity: a biomechanical perspective. Obes Rev 7: 239-250. https://doi.org/10.1111/j.1467-789X.2006.00251.x
  2. Altman R, Asch E, Bloch D. 1986. Development of criteria for the classification and reporting of osteoarthritis. Arthritis Rheum 29: 1039-1049. https://doi.org/10.1002/art.1780290816
  3. Yoo MC. 1995. The latest trend in treating arthritis. J Muscle Joint Health 2: 227-229.
  4. Hochberg MC, Altman RD, Brandt KD, Clark BM, Dieppe PA, Griffin MR, Moskowitz RW, Schnitzer TJ. 1995. Guidelines for the medical management of osteoarthritis. Part II. Osteoarthritis of the knee. American College of Rheumatology. Arthritis Rheum 38: 1541-1546. https://doi.org/10.1002/art.1780381104
  5. Behrens F, Shepard N, Mitchell N. 1975. Alterations of rabbit articular cartilage by intra-articular injections of glucocorticoids. J Bone Joint Surg Am 57: 70-76. https://doi.org/10.2106/00004623-197557010-00012
  6. Leslie M. 2000. Knee osteoarthritis management therapies. Pain Management Nursing 1: 51-57. https://doi.org/10.1053/jpmn.2000.7782
  7. Yoh SB, Sul JU, Shin MS. 2011. Research trends on the treatment of knee osteoarthritis in Korean medicine. Korean J Acupuncture 28: 139-155.
  8. Won CH, Choi ES, Hong SS. 1999. Efficacy of bee venom infection for osteoarthritis patients. J Korean Rheum Assoc 6: 218-226.
  9. Straub DA. 2007. Calcium supplementation in clinical practice: a review of forms, doses, and indication. Nutr Clin Pract 22: 286-296. https://doi.org/10.1177/0115426507022003286
  10. Sakhaee K, Bhuket T, Adams-Huet B, Rao DS. 1999. Metaanalysis of calcium bioavailability: a comparison of calcium citrate with calcium carbonate. Am J Ther 6: 313-321. https://doi.org/10.1097/00045391-199911000-00005
  11. Kenny AM, Prestwood KM, Biskup B, Robbins B, Zayas E, Kleppinger A, Burleson JA, Raisz LG. 2004. Comparison of the effects of calcium loading with calcium citrate or calcium carbonate on bone turnover in postmenopausal women. Osteoporos Int 15: 290-294. https://doi.org/10.1007/s00198-003-1567-0
  12. Zaccaro Scelza MF, da Silva Pierro VS, Chagas MA, da Silva LE, Scelza P. 2010. Evaluation of inflammatory response of EDTA, EDTA-T, and citric acid in animal model. J Endod 36: 515-519. https://doi.org/10.1016/j.joen.2009.11.011
  13. Bryland A, Wieslander A, Carlsson O, Hellmark T, Godaly G. 2012. Citrate treatment reduces endothelial death and inflammation under hyperglycaemic conditions. Diab Vasc Dis Res 9: 42-51. https://doi.org/10.1177/1479164111424297
  14. Ministry of Food and Drug Safety. 2013. Korea Food Additives Code. Chapter 2, p 49.
  15. Rudolphi K, Gerwin N, Verziji N, van der Kraan P, van der Berg W. 2003. Pralnacasan, an inhibitor of interleukin-1$\beta$ converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis Cartilage 11: 738-746. https://doi.org/10.1016/S1063-4584(03)00153-5
  16. Felson DT, Zhang Y. 1998. An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheum 41: 1343-1355. https://doi.org/10.1002/1529-0131(199808)41:8<1343::AID-ART3>3.0.CO;2-9
  17. Han TR, Bang MS. 2009. Rehabilitation medicine. 3rd ed. Konnja Inc., Seoul, Korea. p 905-908.
  18. Choi JY, Oh MS. 2012. Effects of Kamchobuja-tang (Gancaofuzi- tang) on papain-induced osteoarthritis in mice. J Oriental Rehab Med 22: 37-57.
  19. Park DS, Jeong SH, Kim SJ, Seo IB. 2011. Effects of Gagamsosokmyeong-tang (Jiajianxiaoxuming-tang) treatment on the monosodium iodoacetate-induced early stage osteoarthritis in rats. J Oriental Rehab Med 21: 49-65.
  20. An HJ, Lee CK, Park JH, Kim KH, Lee WR, Park IY, Han SM, Lee KG, Park KK. 2012. Effects of bee venom on papain-induced osteoarthritis in an animal model. Kor J Pharmacogn 43: 167-172.
  21. Huang MH, Ding HJ, Chai CY, Haung YF, Yang RC. 1997. Effects of sonication on articular cartilage in experimental osteoarthritis. J Rheumatol 24: 1978-1984.
  22. Bentley G. 1971. Papain-induced degenerative arthritis of the hip in rabbits. J Bone Joint Surg Br 53: 324-337.
  23. Murray DG. 1964. Experimentally induced arthritis using intra-articular papain. Arthritis Rheum 7: 211-219. https://doi.org/10.1002/art.1780070304
  24. The Korean Orthopaedic Association. 2006. Orthopaedics. 6th ed. Newmedical Inc., Seoul, Korea. p 253-261.
  25. Hulejova H, Baresova V, Klezl Z, Polanska M, Adam M, Senolt L. 2007. Increased level of cytokines and matrix metalloproteinases in osteoarthritic subchondral bone. Cytokine 38: 151-156. https://doi.org/10.1016/j.cyto.2007.06.001
  26. Lopez-Armada MJ, Carames B, Martin MA, Cillero-Pastor B, Lires-Dean M, Fuentes-Boquete I, Arenas J, Blanco FJ. 2006. Mitochondrial activity is modulated by TNFalpha and IL-1beta in normal human chondrocyte cells. Osteoarthritis Cartilage 14: 1011-1022. https://doi.org/10.1016/j.joca.2006.03.008
  27. Hwang SI. 1998. The semantics of the immune. Haneul Science Library, Seoul, Korea. p 43, 45, 69, 92.
  28. Smolen JS, Aletaha D, Koeller M, Weisman MH, Emery P. 2007. New therapies for treatment on rheumatoid arthritis. Lancet 370: 1861-1874. https://doi.org/10.1016/S0140-6736(07)60784-3
  29. Lim CK, Yun YG. 2009. Anti-rheumatiod arthritis effects of I-Myo-San water extract. Kor J Oriental Medical Prescription 17: 99-111.
  30. Martel-Pelletier J, Pelletier JP, Fahmi H. 2003. Cyclooxygenase- 2 and prostaglandins in articular tissues. Semin arthritis Rheu 33: 155-167. https://doi.org/10.1016/S0049-0172(03)00134-3
  31. Madson KL, Moore TL, Lawrence JM 3rd, Osborn TG. 1994. Cytokine levels in serum and synovial fluid of patients with juvenile rheumatoid arthritis. J Rheumatol 21: 2359-2363.
  32. Kim JD, Park SW, Lee HK. 1990. Effects of cationic ion on proteoglycan synthesis in bovine articular cartilage. Journal of Korea Medicine University 27: 685-694.
  33. Park KA. 1992. Histology. Korea Medicine, Seoul, Korea. p 169-172.
  34. Park IS. 1994. A morphological study of collagenase-induced degenerative lesion in knee joints of rats. Kor J Knee Surg Res 6: 3-16.
  35. Lyle HM. 1947. An improved tissue technique with hematoxylin-eosin stain. Am J Med Technol 13: 178-181.
  36. Bancroft JD, Gamble M. 2002. Theory and practice of histological techniques. Elsevier Science Health Science Divsion, Philadelphia, PA, USA. p 121-134.
  37. Kang SJ, Kim JW, Kim KY, Ku SK, Lee YJ. 2014. Protective effects of calcium gluconate on osteoarthritis induced by anterior cruciate ligament transection and partial medial menixcectomy in sprague-dawley rats. J Orthop Surg Res 9: 14-21. https://doi.org/10.1186/1749-799X-9-14