References
- Chen, C.C., Hsieh, T.F., Chang, C.H., Ma, W.L., Hung, X.F., Tsai, Y.R., Lin, M.H., Zhang, C., Chang, C., and Shyr, C.R. (2013). Androgen receptor promotes the migration and invasion of upper urinary tract urothelial carcinoma cells through the upregulation of MMP-9 and COX-2. Oncol. Rep. 30, 979-985. https://doi.org/10.3892/or.2013.2506
- Deng, Y., Yao, L., Chau, L., Ng, S.S., Peng, Y., Liu, X., Au, W.S., Wang, J., Li, F., Ji, S., et al. (2003). N-Myc downstream-regulated gene 2 (NDRG2) inhibits glioblastoma cell proliferation. Int. J. Cancer 106, 342-347. https://doi.org/10.1002/ijc.11228
- Flowers, M., and Thompson, P.A. (2009). t10c12 conjugated linoleic acid suppresses HER2 protein and enhances apoptosis in SKBr3 breast cancer cells: possible role of COX2. PLoS One 4, e5342. https://doi.org/10.1371/journal.pone.0005342
- Fosslien, E. (2000). Biochemistry of cyclooxygenase (COX)-2 inhibitors and molecular pathology of COX-2 in neoplasia. Crit. Rev. Clin. Lab. Sci. 37, 431-502. https://doi.org/10.1080/10408360091174286
- Funakoshi-Tago, M., Shimizu, T., Tago, K., Nakamura, M., Itoh, H., Sonoda, Y., and Kasahara, T. (2008). Celecoxib potently inhibits TNFalpha-induced nuclear translocation and activation of NFkappaB. Biochem. Pharmacol. 76, 662-671. https://doi.org/10.1016/j.bcp.2008.06.015
- Greenhough, A., Smartt, H.J., Moore, A.E., Roberts, H.R., Williams, A.C., Paraskeva, C., and Kaidi, A. (2009). The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30, 377-386. https://doi.org/10.1093/carcin/bgp014
- Hao, Q., Zhang, C., Gao, Y., Wang, S., Li, J., Li, M., Xue, X., Li, W., Zhang, W., and Zhang, Y. (2014). FOXP3 inhibits NF-kappaB activity and hence COX2 expression in gastric cancer cells. Cell. Signal. 26, 564-569. https://doi.org/10.1016/j.cellsig.2013.11.030
- Ho, M.Y., Liang, S.M., Hung, S.W., and Liang, C.M. (2013). MIG-7 controls COX-2/PGE2-mediated lung cancer metastasis. Cancer Res. 73, 439-449. https://doi.org/10.1158/0008-5472.CAN-12-2220
- Imada, T., Matsuoka, J., Nobuhisa, T., Okawa, T., Murata, T., Tabuchi, Y., Shirakawa, Y., Ohara, N., Gunduz, M., Nagatsuka, H., et al. (2006). COX-2 induction by heparanase in the progression of breast cancer. Int. J. Mol. Med. 17, 221-228.
- Lee, D.C., Kang, Y.K., Kim, W.H., Jang, Y.J., Kim, D.J., Park, I.Y., Sohn, B.H., Sohn, H.A., Lee, H.G., Lim, J.S., et al. (2008). Functional and clinical evidence for NDRG2 as a candidate suppressor of liver cancer metastasis. Cancer Res. 68, 4210-4220. https://doi.org/10.1158/0008-5472.CAN-07-5040
- Lerebours, F., Vacher, S., Andrieu, C., Espie, M., Marty, M., Lidereau, R., and Bieche, I. (2008). NF-kappa B genes have a major role in inflammatory breast cancer. BMC Cancer 8, 41. https://doi.org/10.1186/1471-2407-8-41
- Li, W., Mao, Z., Fan, X., Cui, L., and Wang, X. (2013). Cyclooxygenase 2 promoted the tumorigenecity of pancreatic cancer cells. Tumour Biol. 35, 2271-2278.
- Lorentzen, A., Lewinsky, R.H., Bornholdt, J., Vogel, L.K., and Mitchelmore, C. (2011). Expression profile of the N-myc downstream regulated gene 2 (NDRG2) in human cancers with focus on breast cancer. BMC Cancer 11, 14. https://doi.org/10.1186/1471-2407-11-14
- Ma, J., Liu, W., Yan, X., Wang, Q., Zhao, Q., Xue, Y., Ren, H., Wu, L., Cheng, Y., Li, S., et al. (2012). Inhibition of endothelial cell proliferation and tumor angiogenesis by up-regulating NDRG2 expression in breast cancer cells. PLoS One 7, e32368. https://doi.org/10.1371/journal.pone.0032368
- Melotte, V., Qu, X., Ongenaert, M., van Criekinge, W., de Bruine, A.P., Baldwin, H.S., and van Engeland, M. (2010). The N-myc downstream regulated gene (NDRG) family: diverse functions, multiple applications. FASEB J. 24, 4153-4166. https://doi.org/10.1096/fj.09-151464
- Oh, S.S., Kim, D., Kim, D.H., Chang, H.H., Sohn, K.C., Kim, K.H., Jung, S.H., Lee, B.K., Kim, J.H., and Kim, K.D. (2012). NDRG2 correlated with favorable recurrence-free survival inhibits metastasis of mouse breast cancer cells via attenuation of active TGF-beta production. Carcinogenesis 33, 1882-1888. https://doi.org/10.1093/carcin/bgs211
- Qu, X., Zhai, Y., Wei, H., Zhang, C., Xing, G., Yu, Y., and He, F. (2002). Characterization and expression of three novel differentiation-related genes belong to the human NDRG gene family. Mol. Cell. Biochem. 229, 35-44. https://doi.org/10.1023/A:1017934810825
- Shen, L., Qu, X., Ma, Y., Zheng, J., Chu, D., Liu, B., Li, X., Wang, M., Xu, C., Liu, N., et al. (2014). Tumor suppressor NDRG2 tips the balance of oncogenic TGF-beta via EMT inhibition in colorectal cancer. Oncogenesis 3, e86. https://doi.org/10.1038/oncsis.2013.48
- Shon, S.K., Kim, A., Kim, J.Y., Kim, K.I., Yang, Y., and Lim, J.S. (2009). Bone morphogenetic protein-4 induced by NDRG2 expression inhibits MMP-9 activity in breast cancer cells. Biochem. Biophys. Res. Commun. 385, 198-203. https://doi.org/10.1016/j.bbrc.2009.05.038
- Singh, B., Berry, J.A., Shoher, A., Ayers, G.D., Wei, C., and Lucci, A. (2007). COX-2 involvement in breast cancer metastasis to bone. Oncogene 26, 3789-3796. https://doi.org/10.1038/sj.onc.1210154
- Stasinopoulos, I., O'Brien, D.R., Wildes, F., Glunde, K., and Bhujwalla, Z.M. (2007). Silencing of cyclooxygenase-2 inhibits metastasis and delays tumor onset of poorly differentiated metastatic breast cancer cells. Mol. Cancer Res. 5, 435-442. https://doi.org/10.1158/1541-7786.MCR-07-0010
- Takai, E., Tsukimoto, M., and Kojima, S. (2013). TGF-beta1 downregulates COX-2 expression leading to decrease of PGE2 production in human lung cancer A549 cells, which is involved in fibrotic response to TGF-beta1. PLoS One 8, e76346. https://doi.org/10.1371/journal.pone.0076346
- Williams, C.S., Mann, M., and DuBois, R.N. (1999). The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18, 7908-7916.
- Wu, M.H., Chen, L.M., Hsu, H.H., Lin, J.A., Lin, Y.M., Tsai, F.J., Tsai, C.H., Huang, C.Y., and Tang, C.H. (2013). Endothelin-1 enhances cell migration through COX-2 up-regulation in human chondrosarcoma. Biochim. Biophys. Acta 1830, 3355-3364. https://doi.org/10.1016/j.bbagen.2013.03.014
- Yang, Z., Li, C., Wang, X., Zhai, C., Yi, Z., Wang, L., Liu, B., Du, B., Wu, H., Guo, X., et al. (2010). Dauricine induces apoptosis, inhibits proliferation and invasion through inhibiting NF-kappaB signaling pathway in colon cancer cells. J. Cell Physiol. 225, 266-275. https://doi.org/10.1002/jcp.22261
- Yao, L., Zhang, J., and Liu, X. (2008). NDRG2: a Myc-repressed gene involved in cancer and cell stress. Acta Biochim. Biophys. Sin. 40, 625-635. https://doi.org/10.1111/j.1745-7270.2008.00434.x
Cited by
- A 22q11.2 amplification in the region encoding microRNA-650 correlates with the epithelial to mesenchymal transition in breast cancer primary cultures of Mexican patients vol.50, pp.2, 2017, https://doi.org/10.3892/ijo.2017.3842
- NDRG2 Expression Decreases Tumor-Induced Osteoclast Differentiation by Down-regulating ICAM1 in Breast Cancer Cells vol.24, pp.1, 2016, https://doi.org/10.4062/biomolther.2015.105
- Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer vol.16, pp.8, 2017, https://doi.org/10.1080/15384101.2016.1241929
- Macrophages induce EMT to promote invasion of lung cancer cells through the IL-6-mediated COX-2/PGE 2 /β-catenin signalling pathway vol.90, 2017, https://doi.org/10.1016/j.molimm.2017.06.018
- Rhus coriaria suppresses angiogenesis, metastasis and tumor growth of breast cancer through inhibition of STAT3, NFκB and nitric oxide pathways vol.6, pp.1, 2016, https://doi.org/10.1038/srep21144
- Role of cyclooxygenase-2 in Trypanosoma cruzisurvival in the early stages of parasite host-cell interaction vol.110, pp.2, 2015, https://doi.org/10.1590/0074-02760140311
- Loss of NDRG2 enhanced activation of the NF-κB pathway by PTEN and NIK phosphorylation for ATL and other cancer development vol.5, pp.1, 2015, https://doi.org/10.1038/srep12841
- Abundant NDRG2 Expression Is Associated with Aggressiveness and Unfavorable Patients’ Outcome in Basal-Like Breast Cancer vol.11, pp.7, 2016, https://doi.org/10.1371/journal.pone.0159073
- Cyclooxygenase-2 in tumor-associated macrophages promotes metastatic potential of breast cancer cells through Akt pathway vol.12, pp.12, 2016, https://doi.org/10.7150/ijbs.15943
- Loss of NDRG2 Expression Confers Oral Squamous Cell Carcinoma with Enhanced Metastatic Potential vol.77, pp.9, 2014, https://doi.org/10.1158/0008-5472.can-16-2114
- Effects of NDRG2 Overexpression on Metastatic Behaviors of HCT116 Colorectal Cancer Cell Line vol.7, pp.4, 2014, https://doi.org/10.15171/apb.2017.080
- Cordycepin inhibits lipopolysaccharide-induced cell migration and invasion in human colorectal carcinoma HCT-116 cells through down-regulation of prostaglandin E2 receptor EP4 vol.51, pp.10, 2014, https://doi.org/10.5483/bmbrep.2018.51.10.120
- Association of HIF-1α and NDRG2 expression with EMT in gastric cancer tissues vol.14, pp.1, 2019, https://doi.org/10.1515/biol-2019-0025
- Association of HIF-1α and NDRG2 expression with EMT in gastric cancer tissues vol.14, pp.1, 2019, https://doi.org/10.1515/biol-2019-0025
- The molecular mechanisms of celecoxib in tumor development vol.99, pp.40, 2020, https://doi.org/10.1097/md.0000000000022544
- Enhancing Anti-Tumor Activity of Sorafenib Mesoporous Silica Nanomatrix in Metastatic Breast Tumor and Hepatocellular Carcinoma via the Co-Administration with Flufenamic Acid vol.15, pp.None, 2014, https://doi.org/10.2147/ijn.s240436
- The Role of Noncoding RNAs in the Regulation of Anoikis and Anchorage-Independent Growth in Cancer vol.22, pp.2, 2014, https://doi.org/10.3390/ijms22020627
- Extracellular ATP Mediates Cancer Cell Migration and Invasion Through Increased Expression of Cyclooxygenase 2 vol.11, pp.None, 2014, https://doi.org/10.3389/fphar.2020.617211
- CD147 receptor is essential for TFF3-mediated signaling regulating colorectal cancer progression vol.6, pp.1, 2014, https://doi.org/10.1038/s41392-021-00677-2
- NDRG2 Expression in Breast Cancer Cells Downregulates PD-L1 Expression and Restores T Cell Proliferation in Tumor-Coculture vol.13, pp.23, 2014, https://doi.org/10.3390/cancers13236112