References
- Bierman, M., Logan, R., O'Brien, K., Seno, E.T., Rao, R.N., and Schoner, B.E. (1992). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43-49. https://doi.org/10.1016/0378-1119(92)90627-2
- Chaudhary, A.K., Dhakal, D., and Sohng, J.K. (2013). An Insight into the "-Omics" based engineering of Streptomycetes for secondary metabolite overproduction. Biomed. Res. Int. 2013, 968518.
- Crouse, G.D., and Sparks, T.C. (1998). Naturally derived materials as products and leads for insect control: the spinosyns. Rev. Tox. 2, 133-146.
- Huang, K. X., Zahn, J., and Han, L. (2008). SpnH from Saccharopolyspora spinosa encodes a rhamnosyl 4-O-methyltransferase for biosynthesis of the insecticidal macrolide, spinosyn A. J. Ind. Microbiol. Biotechnol. 35, 1669-1676. https://doi.org/10.1007/s10295-008-0431-9
- Jha, A.K., Lamichhane, J., and Sohng, J.K. (2014). Enhancement of herboxidiene production in Streptomyces chromofuscus ATCC 49982. J. Microbiol. Biotechnol. 24, 52-58. https://doi.org/10.4014/jmb.1308.08063
- Jin, Z.H., Wu, J.P., Zhang, Y., Cheng, X., Yang, L.R., and Cen, P.L. 2006). Improvement of spinosad producing Saccharopolyspora spinosa by rational screening. J. Zhejiang. University SCIENCE A. 7, 366-370. https://doi.org/10.1631/jzus.2006.AS0366
- Jin, Z.H., Xu, B., Lin, S.Z., Jin, Q.C., and Cen, P.L. (2009). Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling. Appl. Biochem. Biotechnol. 159, 655-663. https://doi.org/10.1007/s12010-008-8500-0
- Kieser, T., Mervyn, J.B., Mark, B.J., Keith,C.F., and David, H.A. (2000). Practical Streptomyces genetics (John Innes Foundation Norwich, UK).
- Kim, D.J., Huh, J.H., Yang, Y.Y., Kang, C.M., Lee, I.H., Hyun, C.G., Hong, S.K., and Suh, J.W. (2003). Accumulation of S-adenosyl-Lmethionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J. Bacteriol. 185, 592-600. https://doi.org/10.1128/JB.185.2.592-600.2003
- Kim, H.J., White-Phillip, J.A., Oqasawara, Y., Shin, N., Isiorho, E.A., and Liu, H.W. (2010). The biosynthesis of spinosyn in Saccharopolyspora spinosa: synthesis of permethylated rhamnose and characterization of the functions of SpnH, SpnI, and SpnK. J. Am. Chem. Soc. 132, 2901-2903. https://doi.org/10.1021/ja910223x
- Kirst, H.A., Michel, K.H., Mynderse, J.S., Chio, E.H., Yao, R.C., Nakatsukasa,W.M., Boeck, L.D., Occlowitz, J.L., Paschal, J.W., Deeter, J.B., et al. (1992). Discovery, isolation and structure elucidation of a family of structurally unique, fermentation-derived tetracyclic macrolides. D.R. Baker, J.G. Feynes, and J.J. Steffens, eds. (Synthesis and Chemistry of Agrochemicals III: American Chemical Society, Washington DC, USA), pp. 214-225.
- Koffas, M., Roberge, C., Lee, K., and Stephanopoulos, G. (1999). Metabolic engineering. Annu. Rev. Biomed. Eng. 1, 535-557. https://doi.org/10.1146/annurev.bioeng.1.1.535
- Lee, P.C., Umeyama, T., and Horinouchi, S. (2002). afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2). Mol. Microbiol. 43, 1413-1430. https://doi.org/10.1046/j.1365-2958.2002.02840.x
- Lee, B.R., Cho, S., Song, Y., Kim, S.C., and Cho, B.K. (2013). Emerging tools for synthetic genome design. Mol. Cells 35, 359-370. https://doi.org/10.1007/s10059-013-0127-5
- Liang, Y., Lu, W., and Wen, J. (2009). Improvement of Saccharopolyspora spinosa and the kinetic analysis for spinosad production. Appl. Biochem. Biotechnol. 152, 440-448. https://doi.org/10.1007/s12010-008-8281-5
- Luo, Y., Ding, X., Xia, L., Huang, F., Li, W., Huang, S., Tang, Y., and Sun, Y. (2011). Comparative proteomic analysis of saccharopolyspora spinosa SP06081 and PR2 strains reveals the differentially expressed proteins correlated with the increase of spinosad yield. Proteome Sci. 9, 40. https://doi.org/10.1186/1477-5956-9-40
- Madduri, K., Waldron, C., and Merlo, D.J. (2001a). Rhamnose biosynthesis pathway supplies precursors for primary and secondary metabolism in Saccharopolyspora spinosa. J. Bacteriol. 183, 5632-5638. https://doi.org/10.1128/JB.183.19.5632-5638.2001
- Madduri, K., Waldron,C., Matsushima, P., Roughton, M.C., Crawford, K., Merlo, D.J., and Baltz, R.H. (2001b). Genes for the biosynthesis of spinosyns: applications for yield improvement in Saccharopolyspora spinosa. J. Ind. Microbiol. Biotechnol. 27, 399-402. https://doi.org/10.1038/sj.jim.7000180
- Nielsen, J. (2001). Metabolic engineering. Appl. Microbiol. Botechnol. 55, 263-283. https://doi.org/10.1007/s002530000511
- Okamoto, S., Lezhava, A., Hosaka, T., Okamoto-Hosoya, Y., and Ochi, K. (2003). Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3 (2). J. Bacteriol. 185, 601-609. https://doi.org/10.1128/JB.185.2.601-609.2003
- Pan, H.X., Li, J.A., He, N.J., Chen, J.Y., Zhou, Y.M., Shao, L., and Chen, D.J. (2011). Improvement of spinosad production by overexpression of gtt and gdh controlled by promoter ermE* in Saccharopolyspora spinosa SIPI-A2090. Biotechnol. Lett. 33, 733-739. https://doi.org/10.1007/s10529-010-0481-8
- Sambrook, J., and Russell, D.W. (2001). Molecular cloning: a laboratory manual, 3rd eds. (Cold Spring Harbor, New York).
- Sparks, T.C., Thompson, G.D., Kirst, H.A., Hertlein, M.B., Mynderse, J.S., Turner, J.R., et al. (1998). Methods in biotechnology, biopesticides: use and delivery. F.R. Hall, and J.J. Menn, eds. (Humana Press, USA), pp. 171-188.
- Sthapit, B., Oh, T.J., Lamichhane, R., Liou, K., Lee, H.C., Kim, C.G., and Sohng, J.K. (2004). Neocarzinostatin naphthoate synthase:an unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566, 201-206. https://doi.org/10.1016/j.febslet.2004.04.033
- Tang, Y., Xia, L., Ding, X., Luo, Y., Huang, F., and Jiang, Y. (2011). Duplication of partial spinosyn biosynthetic gene cluster in Saccharopolyspora spinosa enhances spinosyn production. FEMS Microbiol. Lett. 325, 22-29. https://doi.org/10.1111/j.1574-6968.2011.02405.x
- Waldron, C., Madduri, K., Crawford, K., Merlo, D.J., Treadway, P., Broughton, M.C., and Baltz R.H. (2001a). A cluster of genes for the biosynthesis of spinosyns, novel macrolide insect control agents produced by Saccharopolyspora spinosa. Antonie. Van. Leeuwenhoek. 78, 385-390.
- Waldron, C., Matsushima, P., Rosteck, P.R.J., Broughton, M.C., Turner, J., Madduri, K., Crawford, K.P., Merlo, D.J., and Baltz, R.H. (2001b). Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa. Chem. Biol. 8, 487-499. https://doi.org/10.1016/S1074-5521(01)00029-1
- Wang, Y., Boghigian, B.A., and Pfeifer, B.A. (2007). Improving heterologous polyketide production in Escherichia coli by overexpression of an S-adenosylmethionine synthetase gene. Appl. Microbiol. Biotechnol. 77, 367-373. https://doi.org/10.1007/s00253-007-1172-9
- Xue, C., Duan, Y., Zhao, F., and Lu, W. (2013). Stepwise increase of spinosad production in Saccharopolyspora spinosa by metabolic engineering. Biochem. Eng. J. 72, 90-95. https://doi.org/10.1016/j.bej.2013.01.007
- Zhao, X.Q., Jin, Y.Y., and Kwon, H.J. (2006). S-Adenosylmethionine (SAM) regulates antibiotic biosynthesis in Streptomyces spp. in a mode independent of its role as a methyl donor. J. Microbiol. Biotechnol. 16, 927-932.
Cited by
- Heterologous Expression of Spinosyn Biosynthetic Gene Cluster in Streptomyces Species Is Dependent on the Expression of Rhamnose Biosynthesis Genes vol.27, pp.3, 2017, https://doi.org/10.1159/000477543
- A New Medium for Improving Spinosad Production by Saccharopolyspora spinosa vol.In Press, pp.In Press, 2016, https://doi.org/10.5812/jjm.16765
- High Level of Spinosad Production in the Heterologous Host Saccharopolyspora erythraea vol.82, pp.18, 2016, https://doi.org/10.1128/AEM.00618-16
- Improvement of Spinosad Production upon Utilization of Oils and Manipulation of β-Oxidation in a High-Producing Saccharopolyspora spinosa Strain vol.28, pp.2, 2018, https://doi.org/10.1159/000487854
- Paired-termini antisense RNA mediated inhibition of DoxR in Streptomyces peucetius ATCC 27952 vol.20, pp.3, 2014, https://doi.org/10.1007/s12257-014-0810-1
- S accharopolyspora Species: Laboratory Maintenance and Enhanced Production of Secondary Metabolites vol.44, pp.1, 2014, https://doi.org/10.1002/cpmc.21
- Strategies for Enhancing the Yield of the Potent Insecticide Spinosad in Actinomycetes vol.14, pp.1, 2014, https://doi.org/10.1002/biot.201700769
- Effect of the TetR family transcriptional regulator Sp1418 on the global metabolic network of Saccharopolyspora pogona vol.19, pp.None, 2014, https://doi.org/10.1186/s12934-020-01299-z
- RNA-Seq-Based Transcriptomic Analysis of Saccharopolyspora spinosa Revealed the Critical Function of PEP Phosphonomutase in the Replenishment Pathway vol.68, pp.49, 2014, https://doi.org/10.1021/acs.jafc.0c04443
- Polyketide pesticides from actinomycetes vol.69, pp.None, 2021, https://doi.org/10.1016/j.copbio.2021.05.006