DOI QR코드

DOI QR Code

Metabolic Engineering of Rational Screened Saccharopolyspora spinosa for the Enhancement of Spinosyns A and D Production

  • Jha, Amit Kumar (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Pokhrel, Anaya Raj (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Chaudhary, Amit Kumar (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Park, Seong-Whan (Life Research Institute Dongbu Farm Hannong Co., Ltd.) ;
  • Cho, Wan Je (Life Research Institute Dongbu Farm Hannong Co., Ltd.) ;
  • Sohng, Jae Kyung (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University)
  • Received : 2014.06.16
  • Accepted : 2014.08.19
  • Published : 2014.10.31

Abstract

Spinosyns A and D are potent ingredient for insect control with exceptional safety to non-target organisms. It consists of a 21-carbon tetracyclic lactone with forosamine and tri-Omethylated rhamnose which are derived from S-adenosyl-methionine. Although previous studies have revealed the involvement of metK1 (S-adenosylmethionine synthetase), rmbA (glucose-1-phosphate thymidylyltransferase), and rmbB (TDP-D-glucose-4, 6-dehydratase) in the biosynthesis of spinosad, expression of these genes into rational screened Saccharopolyspora spinosa (S. spinosa MUV) has not been elucidated till date. In the present study, S. spinosa MUV was developed to utilize for metabolic engineering. The yield of spinosyns A and D in S. spinosa MUV was $244mgL^{-1}$ and $129mgL^{-1}$, which was 4.88-fold and 4.77-fold higher than that in the wild-type ($50mgL^{-1}$ and $27mgL^{-1}$), respectively. To achieve the better production; positive regulator metK1-sp, rmbA and rmbB genes from Streptomyces peucetius, were expressed and co-expressed in S. spinosa MUV under the control of strong $ermE^*$ promoter, using an integration vector pSET152 and expression vector pIBR25, respectively. Here-with, the genetically engineered strain of S. spinosa MUV, produce spinosyns A and D up to $372/217mgL^{-1}$ that is 7.44/8.03-fold greater than that of wild type. This result demonstrates the use of metabolic engineering on rationally developed high producing natural variants for the production.

Keywords

References

  1. Bierman, M., Logan, R., O'Brien, K., Seno, E.T., Rao, R.N., and Schoner, B.E. (1992). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43-49. https://doi.org/10.1016/0378-1119(92)90627-2
  2. Chaudhary, A.K., Dhakal, D., and Sohng, J.K. (2013). An Insight into the "-Omics" based engineering of Streptomycetes for secondary metabolite overproduction. Biomed. Res. Int. 2013, 968518.
  3. Crouse, G.D., and Sparks, T.C. (1998). Naturally derived materials as products and leads for insect control: the spinosyns. Rev. Tox. 2, 133-146.
  4. Huang, K. X., Zahn, J., and Han, L. (2008). SpnH from Saccharopolyspora spinosa encodes a rhamnosyl 4-O-methyltransferase for biosynthesis of the insecticidal macrolide, spinosyn A. J. Ind. Microbiol. Biotechnol. 35, 1669-1676. https://doi.org/10.1007/s10295-008-0431-9
  5. Jha, A.K., Lamichhane, J., and Sohng, J.K. (2014). Enhancement of herboxidiene production in Streptomyces chromofuscus ATCC 49982. J. Microbiol. Biotechnol. 24, 52-58. https://doi.org/10.4014/jmb.1308.08063
  6. Jin, Z.H., Wu, J.P., Zhang, Y., Cheng, X., Yang, L.R., and Cen, P.L. 2006). Improvement of spinosad producing Saccharopolyspora spinosa by rational screening. J. Zhejiang. University SCIENCE A. 7, 366-370. https://doi.org/10.1631/jzus.2006.AS0366
  7. Jin, Z.H., Xu, B., Lin, S.Z., Jin, Q.C., and Cen, P.L. (2009). Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling. Appl. Biochem. Biotechnol. 159, 655-663. https://doi.org/10.1007/s12010-008-8500-0
  8. Kieser, T., Mervyn, J.B., Mark, B.J., Keith,C.F., and David, H.A. (2000). Practical Streptomyces genetics (John Innes Foundation Norwich, UK).
  9. Kim, D.J., Huh, J.H., Yang, Y.Y., Kang, C.M., Lee, I.H., Hyun, C.G., Hong, S.K., and Suh, J.W. (2003). Accumulation of S-adenosyl-Lmethionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J. Bacteriol. 185, 592-600. https://doi.org/10.1128/JB.185.2.592-600.2003
  10. Kim, H.J., White-Phillip, J.A., Oqasawara, Y., Shin, N., Isiorho, E.A., and Liu, H.W. (2010). The biosynthesis of spinosyn in Saccharopolyspora spinosa: synthesis of permethylated rhamnose and characterization of the functions of SpnH, SpnI, and SpnK. J. Am. Chem. Soc. 132, 2901-2903. https://doi.org/10.1021/ja910223x
  11. Kirst, H.A., Michel, K.H., Mynderse, J.S., Chio, E.H., Yao, R.C., Nakatsukasa,W.M., Boeck, L.D., Occlowitz, J.L., Paschal, J.W., Deeter, J.B., et al. (1992). Discovery, isolation and structure elucidation of a family of structurally unique, fermentation-derived tetracyclic macrolides. D.R. Baker, J.G. Feynes, and J.J. Steffens, eds. (Synthesis and Chemistry of Agrochemicals III: American Chemical Society, Washington DC, USA), pp. 214-225.
  12. Koffas, M., Roberge, C., Lee, K., and Stephanopoulos, G. (1999). Metabolic engineering. Annu. Rev. Biomed. Eng. 1, 535-557. https://doi.org/10.1146/annurev.bioeng.1.1.535
  13. Lee, P.C., Umeyama, T., and Horinouchi, S. (2002). afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2). Mol. Microbiol. 43, 1413-1430. https://doi.org/10.1046/j.1365-2958.2002.02840.x
  14. Lee, B.R., Cho, S., Song, Y., Kim, S.C., and Cho, B.K. (2013). Emerging tools for synthetic genome design. Mol. Cells 35, 359-370. https://doi.org/10.1007/s10059-013-0127-5
  15. Liang, Y., Lu, W., and Wen, J. (2009). Improvement of Saccharopolyspora spinosa and the kinetic analysis for spinosad production. Appl. Biochem. Biotechnol. 152, 440-448. https://doi.org/10.1007/s12010-008-8281-5
  16. Luo, Y., Ding, X., Xia, L., Huang, F., Li, W., Huang, S., Tang, Y., and Sun, Y. (2011). Comparative proteomic analysis of saccharopolyspora spinosa SP06081 and PR2 strains reveals the differentially expressed proteins correlated with the increase of spinosad yield. Proteome Sci. 9, 40. https://doi.org/10.1186/1477-5956-9-40
  17. Madduri, K., Waldron, C., and Merlo, D.J. (2001a). Rhamnose biosynthesis pathway supplies precursors for primary and secondary metabolism in Saccharopolyspora spinosa. J. Bacteriol. 183, 5632-5638. https://doi.org/10.1128/JB.183.19.5632-5638.2001
  18. Madduri, K., Waldron,C., Matsushima, P., Roughton, M.C., Crawford, K., Merlo, D.J., and Baltz, R.H. (2001b). Genes for the biosynthesis of spinosyns: applications for yield improvement in Saccharopolyspora spinosa. J. Ind. Microbiol. Biotechnol. 27, 399-402. https://doi.org/10.1038/sj.jim.7000180
  19. Nielsen, J. (2001). Metabolic engineering. Appl. Microbiol. Botechnol. 55, 263-283. https://doi.org/10.1007/s002530000511
  20. Okamoto, S., Lezhava, A., Hosaka, T., Okamoto-Hosoya, Y., and Ochi, K. (2003). Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3 (2). J. Bacteriol. 185, 601-609. https://doi.org/10.1128/JB.185.2.601-609.2003
  21. Pan, H.X., Li, J.A., He, N.J., Chen, J.Y., Zhou, Y.M., Shao, L., and Chen, D.J. (2011). Improvement of spinosad production by overexpression of gtt and gdh controlled by promoter ermE* in Saccharopolyspora spinosa SIPI-A2090. Biotechnol. Lett. 33, 733-739. https://doi.org/10.1007/s10529-010-0481-8
  22. Sambrook, J., and Russell, D.W. (2001). Molecular cloning: a laboratory manual, 3rd eds. (Cold Spring Harbor, New York).
  23. Sparks, T.C., Thompson, G.D., Kirst, H.A., Hertlein, M.B., Mynderse, J.S., Turner, J.R., et al. (1998). Methods in biotechnology, biopesticides: use and delivery. F.R. Hall, and J.J. Menn, eds. (Humana Press, USA), pp. 171-188.
  24. Sthapit, B., Oh, T.J., Lamichhane, R., Liou, K., Lee, H.C., Kim, C.G., and Sohng, J.K. (2004). Neocarzinostatin naphthoate synthase:an unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566, 201-206. https://doi.org/10.1016/j.febslet.2004.04.033
  25. Tang, Y., Xia, L., Ding, X., Luo, Y., Huang, F., and Jiang, Y. (2011). Duplication of partial spinosyn biosynthetic gene cluster in Saccharopolyspora spinosa enhances spinosyn production. FEMS Microbiol. Lett. 325, 22-29. https://doi.org/10.1111/j.1574-6968.2011.02405.x
  26. Waldron, C., Madduri, K., Crawford, K., Merlo, D.J., Treadway, P., Broughton, M.C., and Baltz R.H. (2001a). A cluster of genes for the biosynthesis of spinosyns, novel macrolide insect control agents produced by Saccharopolyspora spinosa. Antonie. Van. Leeuwenhoek. 78, 385-390.
  27. Waldron, C., Matsushima, P., Rosteck, P.R.J., Broughton, M.C., Turner, J., Madduri, K., Crawford, K.P., Merlo, D.J., and Baltz, R.H. (2001b). Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa. Chem. Biol. 8, 487-499. https://doi.org/10.1016/S1074-5521(01)00029-1
  28. Wang, Y., Boghigian, B.A., and Pfeifer, B.A. (2007). Improving heterologous polyketide production in Escherichia coli by overexpression of an S-adenosylmethionine synthetase gene. Appl. Microbiol. Biotechnol. 77, 367-373. https://doi.org/10.1007/s00253-007-1172-9
  29. Xue, C., Duan, Y., Zhao, F., and Lu, W. (2013). Stepwise increase of spinosad production in Saccharopolyspora spinosa by metabolic engineering. Biochem. Eng. J. 72, 90-95. https://doi.org/10.1016/j.bej.2013.01.007
  30. Zhao, X.Q., Jin, Y.Y., and Kwon, H.J. (2006). S-Adenosylmethionine (SAM) regulates antibiotic biosynthesis in Streptomyces spp. in a mode independent of its role as a methyl donor. J. Microbiol. Biotechnol. 16, 927-932.

Cited by

  1. Heterologous Expression of Spinosyn Biosynthetic Gene Cluster in Streptomyces Species Is Dependent on the Expression of Rhamnose Biosynthesis Genes vol.27, pp.3, 2017, https://doi.org/10.1159/000477543
  2. A New Medium for Improving Spinosad Production by Saccharopolyspora spinosa vol.In Press, pp.In Press, 2016, https://doi.org/10.5812/jjm.16765
  3. High Level of Spinosad Production in the Heterologous Host Saccharopolyspora erythraea vol.82, pp.18, 2016, https://doi.org/10.1128/AEM.00618-16
  4. Improvement of Spinosad Production upon Utilization of Oils and Manipulation of β-Oxidation in a High-Producing Saccharopolyspora spinosa Strain vol.28, pp.2, 2018, https://doi.org/10.1159/000487854
  5. Paired-termini antisense RNA mediated inhibition of DoxR in Streptomyces peucetius ATCC 27952 vol.20, pp.3, 2014, https://doi.org/10.1007/s12257-014-0810-1
  6. S accharopolyspora Species: Laboratory Maintenance and Enhanced Production of Secondary Metabolites vol.44, pp.1, 2014, https://doi.org/10.1002/cpmc.21
  7. Strategies for Enhancing the Yield of the Potent Insecticide Spinosad in Actinomycetes vol.14, pp.1, 2014, https://doi.org/10.1002/biot.201700769
  8. Effect of the TetR family transcriptional regulator Sp1418 on the global metabolic network of Saccharopolyspora pogona vol.19, pp.None, 2014, https://doi.org/10.1186/s12934-020-01299-z
  9. RNA-Seq-Based Transcriptomic Analysis of Saccharopolyspora spinosa Revealed the Critical Function of PEP Phosphonomutase in the Replenishment Pathway vol.68, pp.49, 2014, https://doi.org/10.1021/acs.jafc.0c04443
  10. Polyketide pesticides from actinomycetes vol.69, pp.None, 2021, https://doi.org/10.1016/j.copbio.2021.05.006