참고문헌
- Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C. (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948-1954. https://doi.org/10.1107/S0907444902016657
- Ahn, J.W., Kim, Y.G., and Kim, K.J. (2010). Crystal structure of nonredox regulated SSADH from Escherichia coli. Biochem. Biophys. Res. Commun. 392, 106-111. https://doi.org/10.1016/j.bbrc.2010.01.014
- Bouche, N., and Fromm, H. (2004). GABA in plants: just a metabolite? Trends Plant Sci. 9, 110-115. https://doi.org/10.1016/j.tplants.2004.01.006
- Bouche, N., Fait, A., Bouchez, D., Moller, S.G., and Fromm, H. (2003). Mitochondrial succinic-semialdehyde dehydrogenase of the gamma-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc. Natl. Acad. Sci. USA 100, 6843-6848. https://doi.org/10.1073/pnas.1037532100
- Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., et al. (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905-921.
- Chaussee, M.A., Callegari, E.A., and Chaussee, M.S. (2004). Rgg regulates growth phase-dependent expression of proteins associated with secondary metabolism and stress in Streptococcus pyogenes. J. Bacteriol. 186, 7091-7099. https://doi.org/10.1128/JB.186.21.7091-7099.2004
- Chaussee, M.A., Dmitriev, A.V., Callegari, E.A., and Chaussee, M.S. (2008). Growth phase-associated changes in the transcriptome and proteome of Streptococcus pyogenes. Arch. Microbiol. 189, 27-41.
- Cunningham, M.W. (2000). Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 13, 470-511. https://doi.org/10.1128/CMR.13.3.470-511.2000
- de Carvalho, L.P., Ling, Y., Shen, C., Warren, J.D., and Rhee, K.Y. (2011). On the chemical mechanism of succinic semialdehyde dehydrogenase (GabD1) from Mycobacterium tuberculosis. Arch. Biochem. Biophys. 509, 90-99. https://doi.org/10.1016/j.abb.2011.01.023
- Di Costanzo, L., Gomez, G.A., and Christianson, D.W. (2007). Crystal structure of lactaldehyde dehydrogenase from Escherichia coli and inferences regarding substrate and cofactor specificity. J. Mol. Biol. 366, 481-493. https://doi.org/10.1016/j.jmb.2006.11.023
- Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132. https://doi.org/10.1107/S0907444904019158
- Fait, A., Fromm, H., Walter, D., Galili, G., and Fernie, A.R. (2008). Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci. 13, 14-19.
-
Fuhrer, T., Chen, L., Sauer, U., and Vitkup, D. (2007). Computational prediction and experimental verification of the gene encoding the
$NAD^+/NADP^+$ -dependent succinate semialdehyde dehydrogenase in Escherichia coli. J. Bacteriol. 189, 8073-8078. https://doi.org/10.1128/JB.01027-07 - Gouet, P., Courcelle, E., Stuart, D.I., and Metoz, F. (1999). ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305-308. https://doi.org/10.1093/bioinformatics/15.4.305
- Grant, S.S., and Hung, D.T. (2013). Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence 4, 273-283. https://doi.org/10.4161/viru.23987
- Jaeger, M., Rothacker, B., and Ilg, T. (2008). Saturation transfer difference NMR studies on substrates and inhibitors of succinic semialdehyde dehydrogenases. Biochem. Biophys. Res. Commun. 372, 400-406. https://doi.org/10.1016/j.bbrc.2008.04.183
- Jang, E.H., Lim, J.E., Chi, Y.M., and Lee, K.S. (2012). Crystallization and preliminary X-ray crystallographic studies of succinic semialdehyde dehydrogenase from Streptococcus pyogenes. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68, 288-291. https://doi.org/10.1107/S1744309111052055
- Kim, Y.G., Lee, S., Kwon, O.S., Park, S.Y., Lee, S.J., Park, B.J., and Kim, K.J. (2009). Redox-switch modulation of human SSADH by dynamic catalytic loop. EMBO J. 28, 959-968. https://doi.org/10.1038/emboj.2009.40
- Kim, K.J., Pearl, P.L., Jensen, K., Snead, O.C., Malaspina, P., Jakobs, C., and Gibson, K.M. (2011). Succinic semialdehyde dehydrogenase: biochemical-molecular-clinical disease mechanisms, redox regulation, and functional significance. Antioxid. Redox. Signal. 15, 691-718. https://doi.org/10.1089/ars.2010.3470
- Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774-797. https://doi.org/10.1016/j.jmb.2007.05.022
-
Langendorf, C.G., Key, T.L., Fenalti, G., Kan, W.T., Buckle, A.M., Caradoc-Davies, T., Tuck, K.L., Law, R.H., and Whisstock, J.C. (2010). The X-ray crystal structure of Escherichia coli succinic semialdehyde dehydrogenase; structural insights into
$NADP^+$ /enzyme interactions. PLoS One 5, e9280. https://doi.org/10.1371/journal.pone.0009280 - Laskowski, R.A., MacArthur, M.W., Moss, D.S., and Thornton, J.M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystalogr. 26, 283-291. https://doi.org/10.1107/S0021889892009944
- Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
- Park, J., and Rhee, S. (2013). Structural basis for a cofactordependent oxidation protection and catalysis of cyanobacterial succinic semialdehyde dehydrogenase. J. Biol. Chem. 288, 15760-15770. https://doi.org/10.1074/jbc.M113.460428
-
Park, S.A., Park, Y.S., and Lee, K.S. (2014). Kinetic characterization and molecular modeling of
$NAD(P)^+$ -dependent succinic semialdehyde dehydrogenase from Bacillus subtilis as an ortholog YneI. J. Microbiol. Biotechnol. 24, 954-958. https://doi.org/10.4014/jmb.1402.02054 - Ralph, A.P., and Carapetis, J.R. (2013). Group a streptococcal diseases and their global burden. Curr. Top. Microbiol. Immunol. 368, 1-27.
- Ramachandran, G.N., Ramakrishnan, C., and Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95-99. https://doi.org/10.1016/S0022-2836(63)80023-6
- Rothacker, B., and Ilg, T. (2008). Functional characterization of a Drosophila melanogaster succinic semialdehyde dehydrogenase and a non-specific aldehyde dehydrogenase. Insect Biochem. Mol. Biol. 38, 354-366. https://doi.org/10.1016/j.ibmb.2007.12.004
- Schneider, B.L., Ruback, S., Kiupakis, A.K., Kasbarian, H., Pybus, C., and Reitzer, L. (2002). The Escherichia coli gabDTPC operon: specific gamma-aminobutyrate catabolism and nonspecific induction. J. Bacteriol. 184, 6976-6986. https://doi.org/10.1128/JB.184.24.6976-6986.2002
- Schrodinger, L.L.C. (2010). The PyMOL Molecular Graphics System, Version 1.3r1.
- Trainor, V.C., Udy, R.K., Bremer, P.J., and Cook, G.M. (1999). Survival of Streptococcus pyogenes under stress and starvation. FEMS Microbiol. Lett. 176, 421-428. https://doi.org/10.1111/j.1574-6968.1999.tb13692.x
- Wood, D.N., Chaussee, M.A., Chaussee, M.S., and Buttaro, B.A. (2005). Persistence of Streptococcus pyogenes in stationaryphase cultures. J. Bacteriol. 187, 3319-3328. https://doi.org/10.1128/JB.187.10.3319-3328.2005
- Wood, D.N., Weinstein, K.E., Podbielski, A., Kreikemeyer, B., Gaughan, J.P., Valentine, S., and Buttaro, B.A. (2009). Generation of metabolically diverse strains of Streptococcus pyogenes during survival in stationary phase. J. Bacteriol. 191, 6242-6252. https://doi.org/10.1128/JB.00440-09
- Wright, S.K., and Viola, R.E. (1998). Evaluation of methods for the quantitation of cysteines in proteins. Anal. Biochem. 265, 8-14. https://doi.org/10.1006/abio.1998.2858
- Yuan, Z., Yin, B., Wei, D., and Yuan, Y.R. (2013). Structural basis for cofactor and substrate selection by cyanobacterium succinic semialdehyde dehydrogenase. J. Struct. Biol. 182, 125-135. https://doi.org/10.1016/j.jsb.2013.03.001
-
Zheng, H., Beliavsky, A., Tchigvintsev, A., Brunzelle, J.S., Brown, G., Flick, R., Evdokimova, E., Wawrzak, Z., Mahadevan, R., Anderson, W.F., et al. (2013). Structure and activity of the
$NAD(P)^+$ -dependent succinate semialdehyde dehydrogenase YneI from Salmonella typhimurium. Proteins 81, 1031-1041. https://doi.org/10.1002/prot.24227
피인용 문헌
- Residues that influence coenzyme preference in the aldehyde dehydrogenases vol.234, 2015, https://doi.org/10.1016/j.cbi.2014.12.039
- Structural insight into the substrate inhibition mechanism of NADP+-dependent succinic semialdehyde dehydrogenase from Streptococcus pyogenes vol.461, pp.3, 2015, https://doi.org/10.1016/j.bbrc.2015.04.047
- The ALDH21 gene found in lower plants and some vascular plants codes for a NADP+ -dependent succinic semialdehyde dehydrogenase 2017, https://doi.org/10.1111/tpj.13648
- A QM/MM study of the catalytic mechanism of succinic semialdehyde dehydrogenase from Synechococcus sp. PCC 7002 and Salmonella typhimurium vol.5, pp.123, 2015, https://doi.org/10.1039/C5RA21535H
- using burst kinetics and enzyme adduct formation vol.285, pp.13, 2018, https://doi.org/10.1111/febs.14497
- Unconventional biochemical regulation of the oxidative pentose phosphate pathway in the model cyanobacterium Synechocystis sp. PCC 6803 vol.477, pp.7, 2020, https://doi.org/10.1042/bcj20200038
- Kinetic and structural insights into enzymatic mechanism of succinic semialdehyde dehydrogenase from Cyanothece sp. ATCC51142 vol.15, pp.9, 2020, https://doi.org/10.1371/journal.pone.0239372