DOI QR코드

DOI QR Code

Kinetic and Structural Characterization for Cofactor Preference of Succinic Semialdehyde Dehydrogenase from Streptococcus pyogenes

  • Jang, Eun Hyuk (Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Park, Seong Ah (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan) ;
  • Chi, Young Min (Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Ki Seog (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan)
  • Received : 2014.06.10
  • Accepted : 2014.09.02
  • Published : 2014.10.31

Abstract

The ${\gamma}$-Aminobutyric acid (GABA) that is found in prokaryotic and eukaryotic organisms has been used in various ways as a signaling molecule or a significant component generating metabolic energy under conditions of nutrient limitation or stress, through GABA catabolism. Succinic semialdehyde dehydrogenase (SSADH) catalyzes the oxidation of succinic semialdehyde to succinic acid in the final step of GABA catabolism. Here, we report the catalytic properties and two crystal structures of SSADH from Streptococcus pyogenes (SpSSADH) regarding its cofactor preference. Kinetic analysis showed that SpSSADH prefers $NADP^+$ over $NAD^+$ as a hydride acceptor. Moreover, the structures of SpSSADH were determined in an apo-form and in a binary complex with $NADP^+$ at $1.6{\AA}$ and $2.1{\AA}$ resolutions, respectively. Both structures of SpSSADH showed dimeric conformation, containing a single cysteine residue in the catalytic loop of each subunit. Further structural analysis and sequence comparison of SpSSADH with other SSADHs revealed that Ser158 and Tyr188 in SpSSADH participate in the stabilization of the 2'-phosphate group of adenine-side ribose in $NADP^+$. Our results provide structural insights into the cofactor preference of SpSSADH as the gram-positive bacterial SSADH.

Keywords

References

  1. Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C. (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948-1954. https://doi.org/10.1107/S0907444902016657
  2. Ahn, J.W., Kim, Y.G., and Kim, K.J. (2010). Crystal structure of nonredox regulated SSADH from Escherichia coli. Biochem. Biophys. Res. Commun. 392, 106-111. https://doi.org/10.1016/j.bbrc.2010.01.014
  3. Bouche, N., and Fromm, H. (2004). GABA in plants: just a metabolite? Trends Plant Sci. 9, 110-115. https://doi.org/10.1016/j.tplants.2004.01.006
  4. Bouche, N., Fait, A., Bouchez, D., Moller, S.G., and Fromm, H. (2003). Mitochondrial succinic-semialdehyde dehydrogenase of the gamma-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc. Natl. Acad. Sci. USA 100, 6843-6848. https://doi.org/10.1073/pnas.1037532100
  5. Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., et al. (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905-921.
  6. Chaussee, M.A., Callegari, E.A., and Chaussee, M.S. (2004). Rgg regulates growth phase-dependent expression of proteins associated with secondary metabolism and stress in Streptococcus pyogenes. J. Bacteriol. 186, 7091-7099. https://doi.org/10.1128/JB.186.21.7091-7099.2004
  7. Chaussee, M.A., Dmitriev, A.V., Callegari, E.A., and Chaussee, M.S. (2008). Growth phase-associated changes in the transcriptome and proteome of Streptococcus pyogenes. Arch. Microbiol. 189, 27-41.
  8. Cunningham, M.W. (2000). Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 13, 470-511. https://doi.org/10.1128/CMR.13.3.470-511.2000
  9. de Carvalho, L.P., Ling, Y., Shen, C., Warren, J.D., and Rhee, K.Y. (2011). On the chemical mechanism of succinic semialdehyde dehydrogenase (GabD1) from Mycobacterium tuberculosis. Arch. Biochem. Biophys. 509, 90-99. https://doi.org/10.1016/j.abb.2011.01.023
  10. Di Costanzo, L., Gomez, G.A., and Christianson, D.W. (2007). Crystal structure of lactaldehyde dehydrogenase from Escherichia coli and inferences regarding substrate and cofactor specificity. J. Mol. Biol. 366, 481-493. https://doi.org/10.1016/j.jmb.2006.11.023
  11. Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132. https://doi.org/10.1107/S0907444904019158
  12. Fait, A., Fromm, H., Walter, D., Galili, G., and Fernie, A.R. (2008). Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci. 13, 14-19.
  13. Fuhrer, T., Chen, L., Sauer, U., and Vitkup, D. (2007). Computational prediction and experimental verification of the gene encoding the $NAD^+/NADP^+$-dependent succinate semialdehyde dehydrogenase in Escherichia coli. J. Bacteriol. 189, 8073-8078. https://doi.org/10.1128/JB.01027-07
  14. Gouet, P., Courcelle, E., Stuart, D.I., and Metoz, F. (1999). ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305-308. https://doi.org/10.1093/bioinformatics/15.4.305
  15. Grant, S.S., and Hung, D.T. (2013). Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence 4, 273-283. https://doi.org/10.4161/viru.23987
  16. Jaeger, M., Rothacker, B., and Ilg, T. (2008). Saturation transfer difference NMR studies on substrates and inhibitors of succinic semialdehyde dehydrogenases. Biochem. Biophys. Res. Commun. 372, 400-406. https://doi.org/10.1016/j.bbrc.2008.04.183
  17. Jang, E.H., Lim, J.E., Chi, Y.M., and Lee, K.S. (2012). Crystallization and preliminary X-ray crystallographic studies of succinic semialdehyde dehydrogenase from Streptococcus pyogenes. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68, 288-291. https://doi.org/10.1107/S1744309111052055
  18. Kim, Y.G., Lee, S., Kwon, O.S., Park, S.Y., Lee, S.J., Park, B.J., and Kim, K.J. (2009). Redox-switch modulation of human SSADH by dynamic catalytic loop. EMBO J. 28, 959-968. https://doi.org/10.1038/emboj.2009.40
  19. Kim, K.J., Pearl, P.L., Jensen, K., Snead, O.C., Malaspina, P., Jakobs, C., and Gibson, K.M. (2011). Succinic semialdehyde dehydrogenase: biochemical-molecular-clinical disease mechanisms, redox regulation, and functional significance. Antioxid. Redox. Signal. 15, 691-718. https://doi.org/10.1089/ars.2010.3470
  20. Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774-797. https://doi.org/10.1016/j.jmb.2007.05.022
  21. Langendorf, C.G., Key, T.L., Fenalti, G., Kan, W.T., Buckle, A.M., Caradoc-Davies, T., Tuck, K.L., Law, R.H., and Whisstock, J.C. (2010). The X-ray crystal structure of Escherichia coli succinic semialdehyde dehydrogenase; structural insights into $NADP^+$/enzyme interactions. PLoS One 5, e9280. https://doi.org/10.1371/journal.pone.0009280
  22. Laskowski, R.A., MacArthur, M.W., Moss, D.S., and Thornton, J.M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystalogr. 26, 283-291. https://doi.org/10.1107/S0021889892009944
  23. Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
  24. Park, J., and Rhee, S. (2013). Structural basis for a cofactordependent oxidation protection and catalysis of cyanobacterial succinic semialdehyde dehydrogenase. J. Biol. Chem. 288, 15760-15770. https://doi.org/10.1074/jbc.M113.460428
  25. Park, S.A., Park, Y.S., and Lee, K.S. (2014). Kinetic characterization and molecular modeling of $NAD(P)^+$-dependent succinic semialdehyde dehydrogenase from Bacillus subtilis as an ortholog YneI. J. Microbiol. Biotechnol. 24, 954-958. https://doi.org/10.4014/jmb.1402.02054
  26. Ralph, A.P., and Carapetis, J.R. (2013). Group a streptococcal diseases and their global burden. Curr. Top. Microbiol. Immunol. 368, 1-27.
  27. Ramachandran, G.N., Ramakrishnan, C., and Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95-99. https://doi.org/10.1016/S0022-2836(63)80023-6
  28. Rothacker, B., and Ilg, T. (2008). Functional characterization of a Drosophila melanogaster succinic semialdehyde dehydrogenase and a non-specific aldehyde dehydrogenase. Insect Biochem. Mol. Biol. 38, 354-366. https://doi.org/10.1016/j.ibmb.2007.12.004
  29. Schneider, B.L., Ruback, S., Kiupakis, A.K., Kasbarian, H., Pybus, C., and Reitzer, L. (2002). The Escherichia coli gabDTPC operon: specific gamma-aminobutyrate catabolism and nonspecific induction. J. Bacteriol. 184, 6976-6986. https://doi.org/10.1128/JB.184.24.6976-6986.2002
  30. Schrodinger, L.L.C. (2010). The PyMOL Molecular Graphics System, Version 1.3r1.
  31. Trainor, V.C., Udy, R.K., Bremer, P.J., and Cook, G.M. (1999). Survival of Streptococcus pyogenes under stress and starvation. FEMS Microbiol. Lett. 176, 421-428. https://doi.org/10.1111/j.1574-6968.1999.tb13692.x
  32. Wood, D.N., Chaussee, M.A., Chaussee, M.S., and Buttaro, B.A. (2005). Persistence of Streptococcus pyogenes in stationaryphase cultures. J. Bacteriol. 187, 3319-3328. https://doi.org/10.1128/JB.187.10.3319-3328.2005
  33. Wood, D.N., Weinstein, K.E., Podbielski, A., Kreikemeyer, B., Gaughan, J.P., Valentine, S., and Buttaro, B.A. (2009). Generation of metabolically diverse strains of Streptococcus pyogenes during survival in stationary phase. J. Bacteriol. 191, 6242-6252. https://doi.org/10.1128/JB.00440-09
  34. Wright, S.K., and Viola, R.E. (1998). Evaluation of methods for the quantitation of cysteines in proteins. Anal. Biochem. 265, 8-14. https://doi.org/10.1006/abio.1998.2858
  35. Yuan, Z., Yin, B., Wei, D., and Yuan, Y.R. (2013). Structural basis for cofactor and substrate selection by cyanobacterium succinic semialdehyde dehydrogenase. J. Struct. Biol. 182, 125-135. https://doi.org/10.1016/j.jsb.2013.03.001
  36. Zheng, H., Beliavsky, A., Tchigvintsev, A., Brunzelle, J.S., Brown, G., Flick, R., Evdokimova, E., Wawrzak, Z., Mahadevan, R., Anderson, W.F., et al. (2013). Structure and activity of the $NAD(P)^+$-dependent succinate semialdehyde dehydrogenase YneI from Salmonella typhimurium. Proteins 81, 1031-1041. https://doi.org/10.1002/prot.24227

Cited by

  1. Residues that influence coenzyme preference in the aldehyde dehydrogenases vol.234, 2015, https://doi.org/10.1016/j.cbi.2014.12.039
  2. Structural insight into the substrate inhibition mechanism of NADP+-dependent succinic semialdehyde dehydrogenase from Streptococcus pyogenes vol.461, pp.3, 2015, https://doi.org/10.1016/j.bbrc.2015.04.047
  3. The ALDH21 gene found in lower plants and some vascular plants codes for a NADP+ -dependent succinic semialdehyde dehydrogenase 2017, https://doi.org/10.1111/tpj.13648
  4. A QM/MM study of the catalytic mechanism of succinic semialdehyde dehydrogenase from Synechococcus sp. PCC 7002 and Salmonella typhimurium vol.5, pp.123, 2015, https://doi.org/10.1039/C5RA21535H
  5. using burst kinetics and enzyme adduct formation vol.285, pp.13, 2018, https://doi.org/10.1111/febs.14497
  6. Unconventional biochemical regulation of the oxidative pentose phosphate pathway in the model cyanobacterium Synechocystis sp. PCC 6803 vol.477, pp.7, 2020, https://doi.org/10.1042/bcj20200038
  7. Kinetic and structural insights into enzymatic mechanism of succinic semialdehyde dehydrogenase from Cyanothece sp. ATCC51142 vol.15, pp.9, 2020, https://doi.org/10.1371/journal.pone.0239372