초록
본 논문에서는 스마트 TV, 스마트폰으로 대표되는 스마트 장치에서 비접촉식 전위계차 센서(CEPS)로부터 추출된 동작신호를 k-NN과 DTW 알고리즘을 이용하여 인식하는 방법을 제안한다. 먼저 CEPS 신호는 칼만 필터를 이용해서 잡음을 제거해주고 정규화를 시켜준다. 다음 인식 속도를 향상시키고 분류에 방해되는 성분제거 하기 위해 PCA 알고리즘을 사용해서 신호의 차원을 축소시켰다. 그리고 k-NN과 DTW 알고리즘을 사용하여 인식 작업을 수행하였다. 실험 결과에서는 앞서 언급된 2개의 스마트 장치 환경 셋팅에 대해서 설명하고 각각의 환경에서 추출된 신호를 제안된 알고리즘에 의해서 인식을 하였다. 기존 인식 알고리즘의 결합과 분해를 통해 다양한 결과를 비교 분석함하고 90% 이상의 인식률을 달성함으로써 제안된 방법의 우수성을 증명하였다.
This paper presents a novel approach to recognize human gestures using k-NN and DTW based on Con tactless Electronic Potential Sensor(CEPS) in the smart devices such as smart TV and smart-phone in the proposed method, we used a Kalman filter to remove noise on gesture signal from CEPS and a PCA algorithm is utilized for reducing the dimensionality of gesture signal without data losses. And then in order to categorize gesture signals, k-NN classifier with DTW distance measure is considered. In the experimental result, we evaluate recognition performance with CEPS gesutres signal form the above two types of smart devices, and we can successfully identify five different gestures with more than 90% of recognition accuracy.