DOI QR코드

DOI QR Code

Atypical Antidepressant Activity of 3,4-Bis(3,4-Dimethoxyphenyl) Furan-2,5-Dione Isolated from Heart Wood of Cedrus deodara, in Rodents

  • Kumar, Nitesh (Manipal College of Pharmaceutical Sciences, Manipal University) ;
  • Dhayabaran, Daniel (Farooqia College of Pharmacy) ;
  • Nampoothiri, Madhavan (Manipal College of Pharmaceutical Sciences, Manipal University) ;
  • Nandakumar, Krishnadas (Manipal College of Pharmaceutical Sciences, Manipal University) ;
  • Puratchikody, A. (Department of Pharmaceutical Technology, Anna University Chennai, Regional Office) ;
  • Lalani, Natasha (Manipal College of Pharmaceutical Sciences, Manipal University) ;
  • Dawood, Karima (Manipal College of Pharmaceutical Sciences, Manipal University) ;
  • Ghosh, Aanesha (Manipal College of Pharmaceutical Sciences, Manipal University)
  • Received : 2014.02.21
  • Accepted : 2014.07.20
  • Published : 2014.10.30

Abstract

Cedrus deodara (Pinaceae) has been used traditionally in Ayurveda for the treatment of central nervous system disorders. 3,4-bis(3,4-dimethoxyphenyl)furan-2,5-dione (BDFD) was isolated from heart wood of Cedrus deodara and was shown to have antiepileptic and anxiolytic activity. Thus, the present study was aimed to explore its anti-depressant effect and to correlate the effect with serotonin and nor adrenaline levels of brain. Albino mice were used as experimental animal. Animals were divided in to three groups; vehicle control, imipramine (30 mg/kg i.p.), BDFD (100 mg/kg i.p.). Tail suspension test (TST) and forced swim test (FST) was performed to evaluate antidepressant effect of BDFD. BDFD (100 mg/kg, i.p.) showed a significant decrease in immobility time when subjected to FST whereas immobility time was not significantly altered in TST. BDFD treatment increased serotonin and noradrenaline levels in the brain which is indicative of BDFD having possible atypical antidepressant action.

Keywords

References

  1. Kar K, Puri VN, Patnaik GK, Sur RN, Dhawan BN, Kulshrestha DK, Rastogi RP. Spasmolytic constituents of Cedrus deodara (Roxb.) Loud: pharmacological evaluation of himachalol. J Pharm Sci. 1975;64:258-262. https://doi.org/10.1002/jps.2600640213
  2. Shinde U, Phadke A, Nair A, Mungantiwar A, Dikshit V, Saraf M. Preliminary studies on the immunomodulatory activity of Cedrus deodara wood oil. Fitoterapia. 1999;70:333-339. https://doi.org/10.1016/S0367-326X(99)00031-3
  3. Saxena A, Saxena AK, Singh J, Bhushan S. Natural antioxidants synergistically enhance the anticancer potential of AP9-cd, a novel lignan composition from Cedrus deodara in human leukemia HL-60 cells. Chem Biol Interact. 2010;188: 580-590. https://doi.org/10.1016/j.cbi.2010.09.029
  4. Dikshit A, Dixit S. Cedrus oil--a promising antifungal agent. Indian Perfumer. 1982;26:216-227.
  5. Bisht LS, Brindavanam NB, Kimothic P. Comparative study of herbal agents used for fumigtation in relations to formulation(*). Anc Sci Life. 1988;8:125-132.
  6. Phillipson JD, Anderson LA. Ethnopharmacology and Western medicine. J Ethnopharmacol. 1989;25:61-72. https://doi.org/10.1016/0378-8741(89)90045-7
  7. Gupta PP, Kulshrestha DK, Patnaik GK. Antiallergic activity of cedrus deodara. J Med Aromatic Plant Sci. 1997;19:1007-1008.
  8. Tiwari AK, Srinivas PV, Kumar SP, Rao JM. Free radical scavenging active components from Cedrus deodara. J Agric Food Chem. 2001;49:4642-4645. https://doi.org/10.1021/jf010573a
  9. Nisha M, Kalyanasundaram M, Paily KP, Abidha, Vanamail P, Balaraman K. In vitro screening of medicinal plant extracts for macrofilaricidal activity. Parasitol Res. 2007;100:575-579.
  10. Singh A, Singh DK. Effect of herbal molluscicides and their combinations on the reproduction of the snail Lymnaea acuminata. Arch Environ Contam Toxicol. 2004;46:470-477.
  11. Shivanand P, Viral D, Manish G, Subhash V, Jaganathan K. Formulation and evaluation of cedrus deodara loud extract. Int J Chem Tech Res. 2009;100:1145-1152.
  12. Gautam R, Saklani A, Jachak SM. Indian medicinal plants as a source of antimycobacterial agents. J Ethnopharmacol. 2007; 110:200-234. https://doi.org/10.1016/j.jep.2006.12.031
  13. Ramesh C, Krishnadas N, Radhakrishnan R, Rangappa S, Viswanatha GLS, Rajesh D, Gopal M, Talwar S. Anti- urolithiatic activity of heart wood extract of cedrus deodara in rats. J Complement Integr Med. 2010;7:1-9.
  14. Kumar A, Singh V, Chaudhary AK. Gastric antisecretory and antiulcer activities of Cedrus deodara (Roxb.) Loud. in Wistar rats. J Ethnopharmacol. 2011;134:294-297. https://doi.org/10.1016/j.jep.2010.12.019
  15. Dhayabaran D, Florance EJ, Nandakumar K, Shanmugarathinam A, Puratchikody A. Anticonvulsant activity of fraction isolated from ethanolic extract of heartwood of Cedrus deodara. J Nat Med. 2014;68:310-315. https://doi.org/10.1007/s11418-013-0798-4
  16. Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl). 1985;85:367-370. https://doi.org/10.1007/BF00428203
  17. Lee JK. Anti-depressant like effect of methyl gallate isolated from acer barbinerve in mice. Korean J Physiol Pharmacol. 2013;17:441-446. https://doi.org/10.4196/kjpp.2013.17.5.441
  18. Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl). 2005;177:245-255. https://doi.org/10.1007/s00213-004-2048-7
  19. Lakshmana MK, Raju TR. An isocratic assay for norepinephrine, dopamine, and 5-hydroxytryptamine using their native fluorescence by high-performance liquid chromatography with fluorescence detection in discrete brain areas of rat. Anal Biochem. 1997;246:166-170. https://doi.org/10.1006/abio.1996.9997
  20. Akiskal HS, Van Valkenburg C. Mood disorders. Diagnostic Interviewing: Springer; 1994. p. 79-107.
  21. Ruhe HG, Mason NS, Schene AH. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry. 2007;12:331-359. https://doi.org/10.1038/sj.mp.4001949
  22. Kalueff AV, Nutt DJ. Role of GABA in anxiety and depression. Depress Anxiety. 2007;24:495-517. https://doi.org/10.1002/da.20262
  23. Auer DP, Putz B, Kraft E, Lipinski B, Schill J, Holsboer F. Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry. 2000;47:305-313. https://doi.org/10.1016/S0006-3223(99)00159-6
  24. Janowsky DS, el-Yousef MK, Davis JM. Acetylcholine and depression. Psychosom Med. 1974;36:248-257. https://doi.org/10.1097/00006842-197405000-00008
  25. Krishnan V, Nestler EJ. Animal models of depression: molecular perspectives. Curr Top Behav Neurosci. 2011;7:121-147. https://doi.org/10.1007/7854_2010_108
  26. Lee B, Sur B, Yeom M, Shim I, Lee H, Hahm DH. Effect of Berberine on Depression- and Anxiety-Like Behaviors and Activation of the Noradrenergic System Induced by Development of Morphine Dependence in Rats. Korean J Physiol Pharmacol. 2012;16:379-386. https://doi.org/10.4196/kjpp.2012.16.6.379
  27. Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl). 2005;177:245-255. https://doi.org/10.1007/s00213-004-2048-7
  28. Cryan JF, Mombereau C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry. 2004;9:326-357. https://doi.org/10.1038/sj.mp.4001457
  29. Zhou Q, Liu M. Doubt about antidepressant-like effect. J Biomed Res. 2013;27:245-248. https://doi.org/10.7555/JBR.27.20120055

Cited by

  1. A pharmacological basis of herbal medicines for epilepsy vol.52, pp.2, 2014, https://doi.org/10.1016/j.yebeh.2015.05.012
  2. Chelidonic acid evokes antidepressant-like effect through the up-regulation of BDNF in forced swimming test vol.241, pp.14, 2014, https://doi.org/10.1177/1535370216642044
  3. Antidepressant-like effect of Ikwitang involves modulation of monoaminergic systems vol.13, pp.3, 2014, https://doi.org/10.3892/mmr.2016.4809
  4. Evaluation of antidepressant activity of methanolic extract of Saraca asoca bark in a chronic unpredictable mild stress model vol.29, pp.2, 2014, https://doi.org/10.1097/wnr.0000000000000944
  5. Cannabinoid receptor 2 activation mitigates lipopolysaccharide-induced neuroinflammation and sickness behavior in mice vol.236, pp.6, 2019, https://doi.org/10.1007/s00213-019-5166-y
  6. Spermidine, an autophagy inducer, as a therapeutic strategy in neurological disorders vol.83, pp.None, 2014, https://doi.org/10.1016/j.npep.2020.102083