DOI QR코드

DOI QR Code

Correlation between the morning hypertension on ambulatory blood pressure monitoring and the left ventricular mass in children

  • Kim, Hyun Jung (Department of Pediatrics, Eulji Universitiy School of Medicine) ;
  • Kim, Kyung Hee (Department of Pediatrics, Chungnam University School of Medicine) ;
  • Kil, Hong Ryang (Department of Pediatrics, Chungnam University School of Medicine)
  • Received : 2013.10.05
  • Accepted : 2014.05.16
  • Published : 2014.09.10

Abstract

Purpose: Although high morning blood pressure (BP) is known to be associated with the onset of cardiovascular events in adults, data on its effects in children with hypertension are limited. Our retrospective study aimed to define the clinical characteristics of children with morning hypertension (MH) and to determine its associated factors. Methods: We reviewed 31 consecutive patients with hypertension, confirmed by the ambulatory blood pressure monitoring (ABPM). We divided these patients into 2 groups: the MH group (n=21, 67.7%), morning BP above the 95th percentile for age and height (2 hours on average after waking up) and the normal morning BP group (n=10, 32.3%). We compared the clinical manifestations, laboratory results, and echocardiographic findings including left ventricular hypertrophy (LVH) between the groups. Results: The early/atrial (E/A) mitral flow velocity ratio in the MH group was significantly lower than that in the normal morning BP group. In addition, LV mass was higher in the MH group than in the normal morning BP group, although the difference was not statistically significant. The age at the time of hypertension diagnosis was significantly higher in the MH group than in the normal morning BP group (P =0.003). The incidence of hyperuricemia was significantly higher in the MH group than in the normal morning BP group. Conclusion: Older patients and those with hyperuricemia are at higher risk for MH. The rise in BP in the morning is an important factor influencing the development of abnormal relaxation, as assessed by echocardiography. Clinical trials with longer follow-up periods and larger sample sizes are needed to clarify the clinical significance of MH.

Keywords

References

  1. Mansoor GA, McCabe EJ, White WB. Long-term reproducibility of ambulatory blood pressure. J Hypertens 1994;12:703-8.
  2. Appel LJ, Stason WB. Ambulatory blood pressure monitoring and blood pressure self-measurement in the diagnosis and management of hypertension. Ann Intern Med 1993;118:867-82.
  3. Asayama K, Ohkubo T, Kikuya M, Obara T, Metoki H, Inoue R, et al. Prediction of stroke by home "morning" versus "evening" blood pressure values: the Ohasama study. Hypertension 2006;48:737-43.
  4. Ishikawa J, Kario K, Hoshide S, Eguchi K, Morinari M, Kaneda R, et al. Determinants of exaggerated difference in morning and evening blood pressure measured by self-measured blood pressure monitoring in medicated hypertensive patients: Jichi Morning Hypertension Research (J-MORE) Study. Am J Hypertens 2005;18:958-65.
  5. Shimizu M, Ishikawa J, Eguchi K, Hoshide S, Shimada K, Kario K. Association of an abnormal blood glucose level and morning blood pressure surge in elderly subjects with hypertension. Am J Hypertens 2009;22:611-6.
  6. Lee CG, Moon JS, Choi JM, Nam CM, Lee SY, Oh K, et al. Normative blood pressure references for Korean children and adolescents. Korean J Pediatr 2008;51:33-41.
  7. Fang J, Alderman MH. Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971-1992. National Health and Nutrition Examination Survey. JAMA 2000;283:2404-10.
  8. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Curr Opin Cardiol 2006;21:1-6.
  9. de Simone G, Daniels SR, Devereux RB, Meyer RA, Roman MJ, de Divitiis O, et al. Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol 1992;20:1251-60.
  10. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 1991;114:345-52.
  11. Mancia G, Sega R, Bravi C, De Vito G, Valagussa F, Cesana G, et al. Ambulatory blood pressure normality: results from the PAMELA study. J Hypertens 1995;13(12 Pt 1):1377-90.
  12. Ohkubo T, Imai Y, Tsuji I, Nagai K, Ito S, Satoh H, et al. Reference values for 24-hour ambulatory blood pressure monitoring based on a prognostic criterion: the Ohasama Study. Hypertension 1998;32:255-9.
  13. White WB. Relevance of blood pressure variation in the circadian onset of cardiovascular events. J Hypertens Suppl 2003;21:S9-15.
  14. Kario K, James GD, Marion R, Ahmed M, Pickering TG. The influence of work- and home-related stress on the levels and diurnal variation of ambulatory blood pressure and neurohumoral factors in employed women. Hypertens Res 2002;25:499-506.
  15. Acosta AA, McNiece KL. Ambulatory blood pressure monitoring: a versatile tool for evaluating and managing hypertension in children. Pediatr Nephrol 2008;23:1399-408.
  16. Imai Y, Hozawa A, Ohkubo T, Tsuji I, Yamaguchi J, Matsubara M, et al. Predictive values of automated blood pressure measurement: what can we learn from the Japanese population - the Ohasama study. Blood Press Monit 2001;6:335-9.
  17. Gosse P, Ansoborlo P, Lemetayer P, Clementy J. Left ventricular mass is better correlated with arising blood pressure than with office or occasional blood pressure. Am J Hypertens 1997;10(5 Pt 1):505-10.
  18. Kario K, Pickering TG, Umeda Y, Hoshide S, Hoshide Y, Morinari M, et al. Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study. Circulation 2003;107:1401-6.
  19. Mazzali M, Hughes J, Kim YG, Jefferson JA, Kang DH, Gordon KL, et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 2001;38:1101-6.
  20. Brown DW, Giles WH, Croft JB. Left ventricular hypertrophy as a predictor of coronary heart disease mortality and the effect of hypertension. Am Heart J 2000;140:848-56.
  21. Kuwajima I, Mitani K, Miyao M, Suzuki Y, Kuramoto K, Ozawa T. Cardiac implications of the morning surge in blood pressure in elderly hypertensive patients: relation to arising time. Am J Hypertens 1995;8:29-33.
  22. Schillaci G, Pasqualini L, Verdecchia P, Vaudo G, Marchesi S, Porcellati C, et al. Prognostic significance of left ventricular diastolic dysfunction in essential hypertension. J Am Coll Cardiol 2002;39:2005-11.
  23. Murdison KA, Treiber FA, Mensah G, Davis H, Thompson W, Strong WB. Prediction of left ventricular mass in youth with family histories of essential hypertension. Am J Med Sci 1998;315:118-23.
  24. Friberg P, Allansdotter-Johnsson A, Ambring A, Ahl R, Arheden H, Framme J, et al. Increased left ventricular mass in obese adolescents. Eur Heart J 2004;25:987-92.
  25. Garin EH, Araya CE. Treatment of systemic hypertension in children and adolescents. Curr Opin Pediatr 2009;21:600-4.
  26. Schmieder RE, Schlaich MP, Klingbeil AU, Martus P. Update on reversal of left ventricular hypertrophy in essential hypertension (a meta-analysis of all randomized double-blind studies until December 1996). Nephrol Dial Transplant 1998;13:564-9.
  27. Klingbeil AU, Schneider M, Martus P, Messerli FH, Schmieder RE. A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med 2003;115:41-6.
  28. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA 2008;300:924-32.
  29. Zakopoulos NA, Tsivgoulis G, Barlas G, Spengos K, Manios E, Ikonomidis I, et al. Impact of the time rate of blood pressure variation on left ventricular mass. J Hypertens 2006;24:2071-7.
  30. London GM. Role of arterial wall properties in the pathogenesis of systolic hypertension. Am J Hypertens 2005;18(1 Pt 2):19S-22S.
  31. McNiece KL, Gupta-Malhotra M, Samuels J, Bell C, Garcia K, Poffenbarger T, et al. Left ventricular hypertrophy in hypertensive adolescents: analysis of risk by 2004 National High Blood Pressure Education Program Working Group staging criteria. Hypertension 2007;50:392-5.
  32. Shibuya Y, Ikeda T, Gomi T. Morning rise of blood pressure assessed by home blood pressure monitoring is associated with left ventricular hypertrophy in hypertensive patients receiving long-term antihypertensive medication. Hypertens Res 2007;30:903-11.

Cited by

  1. Time to First Cigarette and Hypertension in Korean Male Smokers vol.36, pp.5, 2014, https://doi.org/10.4082/kjfm.2015.36.5.221
  2. Left ventricular hypertrophy and diastolic function in children and adolescents with essential hypertension vol.21, pp.None, 2014, https://doi.org/10.1186/s40885-015-0031-8
  3. Time to First Cigarette and Self-Reported Health Among US Adult Smokers vol.12, pp.None, 2014, https://doi.org/10.1177/1179173x18825262