DOI QR코드

DOI QR Code

Interaction between thyroglobulin and ADAMTS16 in premature ovarian failure

  • Pyun, Jung-A (Department of Biomedical Science, College of Life Science, CHA University) ;
  • Kim, Sunshin (Department of Biomedical Science, College of Life Science, CHA University) ;
  • Kwack, KyuBum (Department of Biomedical Science, College of Life Science, CHA University)
  • 투고 : 2014.07.17
  • 심사 : 2014.09.06
  • 발행 : 2014.09.30

초록

Objective: The aim of the present study was to examine whether interactions between polymorphisms in the thyroglobulin and ADAM metallopeptidase with thrombospondin type 1 motif, 16 (ADAMTS16) genes are associated with the development of premature ovarian failure (POF). Methods: A total of 75 patients with POF and 196 controls were involved in this study. We used a GoldenGate assay to genotype single nucleotide polymorphisms (SNPs). Logistic regression analysis was performed to identify POF-associated polymorphisms and synergistic interactions between polymorphisms in the thyroglobulin and ADAMTS16 genes. Results: Single gene analyses using logistic regression analysis showed no significant association between polymorphisms in the two genes and POF. In the results from interaction analyses, we found seven synergistic interactions between the polymorphisms in thyroglobulin and ADAMTS16, although there was no combination showing p-values lower than the significant threshold using the Bonferroni correction. When the AG genotype was present at the rs853326 missense SNP, the A and G alleles at the tagging SNPs rs16875268 and rs13168665 showed significant interactions (odds ratios=5.318 and 16.2 respectively; 95% confidence intervals, 1.64-17.28 and 2.08-126.4; p=0.0054 and 0.0079). Conclusion: Synergistic interactions between polymorphisms in the thyroglobulin and ADAMTS16 genes were associated with an increased risk of POF development in Korean women.

키워드

참고문헌

  1. Goswami D, Conway GS. Premature ovarian failure. Horm Res 2007;68:196-202. https://doi.org/10.1159/000102537
  2. Vujovic S. Aetiology of premature ovarian failure. Menopause Int 2009;15:72-5. https://doi.org/10.1258/mi.2009.009020
  3. Pyun JA, Kang H, Kim J, Cha DH, Kwack K. Thyroglobulin gene is associated with premature ovarian failure. Fertil Steril 2011;95:397-400. https://doi.org/10.1016/j.fertnstert.2010.08.038
  4. Pyun JA, Kim S, Cha DH, Ko JJ, Kwack K. Epistasis between the HSD17B4 and TG polymorphisms is associated with premature ovarian failure. Fertil Steril 2012;97:968-73. https://doi.org/10.1016/j.fertnstert.2011.12.044
  5. Maruo T, Hayashi M, Matsuo H, Yamamoto T, Okada H, Mochizuki M. The role of thyroid hormone as a biological amplifier of the actions of follicle-stimulating hormone in the functional differentiation of cultured porcine granulosa cells. Endocrinology 1987;121:1233-41. https://doi.org/10.1210/endo-121-4-1233
  6. Wakim AN, Polizotto SL, Burholt DR. Influence of thyroxine on human granulosa cell steroidogenesis in vitro. J Assist Reprod Genet 1995;12:274-7. https://doi.org/10.1007/BF02212931
  7. Wakim AN, Polizotto SL, Burholt DR. Augmentation by thyroxine of human granulosa cell gonadotrophin-induced steroidogenesis. Hum Reprod 1995;10:2845-8. https://doi.org/10.1093/oxfordjournals.humrep.a135805
  8. Spicer LJ, Alonso J, Chamberlain CS. Effects of thyroid hormones on bovine granulosa and thecal cell function in vitro: dependence on insulin and gonadotropins. J Dairy Sci 2001;84:1069-76. https://doi.org/10.3168/jds.S0022-0302(01)74567-5
  9. Rubio IG, Medeiros-Neto G. Mutations of the thyroglobulin gene and its relevance to thyroid disorders. Curr Opin Endocrinol Diabetes Obes 2009;16:373-8. https://doi.org/10.1097/MED.0b013e32832ff218
  10. Gao S, De Geyter C, Kossowska K, Zhang H. FSH stimulates the expression of the ADAMTS-16 protease in mature human ovarian follicles. Mol Hum Reprod 2007;13:465-71. https://doi.org/10.1093/molehr/gam037
  11. Ireland JL, Jimenez-Krassel F, Winn ME, Burns DS, Ireland JJ. Evidence for autocrine or paracrine roles of alpha2-macroglobulin in regulation of estradiol production by granulosa cells and development of dominant follicles. Endocrinology 2004;145:2784-94. https://doi.org/10.1210/en.2003-1407
  12. Pyun JA, Kim S, Cha DH, Kwack K. Epistasis between polymorphisms in TSHB and ADAMTS16 is associated with premature ovarian failure. Menopause 2014;21:890-5. https://doi.org/10.1097/GME.0000000000000172
  13. Chang SH, Kim CS, Lee KS, Kim H, Yim SV, Lim YJ, et al. Premenopausal factors influencing premature ovarian failure and early menopause. Maturitas 2007;58:19-30. https://doi.org/10.1016/j.maturitas.2007.04.001
  14. Patrick L. Thyroid disruption: mechanism and clinical implications in human health. Altern Med Rev 2009;14:326-46.
  15. Wakim AN, Polizotto SL, Buffo MJ, Marrero MA, Burholt DR. Thyroid hormones in human follicular fluid and thyroid hormone receptors in human granulosa cells. Fertil Steril 1993;59:1187-90. https://doi.org/10.1016/S0015-0282(16)55974-3
  16. Wakim AN, Polizotto SL, Burholt DR. Alpha-1 and beta-1 thyroid hormone receptors on human granulosa cells. Recent Prog Horm Res 1994;49:377-81.
  17. Wakim AN, Paljug WR, Jasnosz KM, Alhakim N, Brown AB, Burholt DR. Thyroid hormone receptor messenger ribonucleic acid in human granulosa and ovarian stromal cells. Fertil Steril 1994;62:531-4. https://doi.org/10.1016/S0015-0282(16)56941-6
  18. Goldman S, Dirnfeld M, Abramovici H, Kraiem Z. Triiodothyronine (T3) modulates hCG-regulated progesterone secretion, cAMP accumulation and DNA content in cultured human luteinized granulosa cells. Mol Cell Endocrinol 1993;96:125-31. https://doi.org/10.1016/0303-7207(93)90102-P
  19. Kim PS, Kwon OY, Arvan P. An endoplasmic reticulum storage disease causing congenital goiter with hypothyroidism. J Cell Biol 1996;133:517-27. https://doi.org/10.1083/jcb.133.3.517
  20. Medeiros-Neto G, Kim PS, Yoo SE, Vono J, Targovnik HM, Camargo R, et al. Congenital hypothyroid goiter with deficient thyroglobulin. Identification of an endoplasmic reticulum storage disease with induction of molecular chaperones. J Clin Invest 1996;98:2838-44. https://doi.org/10.1172/JCI119112
  21. Hishinuma A, Takamatsu J, Ohyama Y, Yokozawa T, Kanno Y, Kuma K, et al. Two novel cysteine substitutions (C1263R and C1995S) of thyroglobulin cause a defect in intracellular transport of thyroglobulin in patients with congenital goiter and the variant type of adenomatous goiter. J Clin Endocrinol Metab 1999;84:1438-44.
  22. Hammond C, Helenius A. Quality control in the secretory pathway. Curr Opin Cell Biol 1995;7:523-9. https://doi.org/10.1016/0955-0674(95)80009-3
  23. Kim PS, Arvan P. Folding and assembly of newly synthesized thyroglobulin occurs in a pre-Golgi compartment. J Biol Chem 1991;266:12412-8.
  24. Bonifacino JS, Lippincott-Schwartz J. Degradation of proteins within the endoplasmic reticulum. Curr Opin Cell Biol 1991;3:592-600. https://doi.org/10.1016/0955-0674(91)90028-W
  25. Knobel M, Medeiros-Neto G. An outline of inherited disorders of the thyroid hormone generating system. Thyroid 2003;13:771-801. https://doi.org/10.1089/105072503768499671
  26. Brocker CN, Vasiliou V, Nebert DW. Evolutionary divergence and functions of the ADAM and ADAMTS gene families. Hum Genomics 2009;4:43-55. https://doi.org/10.1186/1479-7364-4-1-43
  27. Richards JS, Hernandez-Gonzalez I, Gonzalez-Robayna I, Teuling E, Lo Y, Boerboom D, et al. Regulated expression of ADAMTS family members in follicles and cumulus oocyte complexes: evidence for specific and redundant patterns during ovulation. Biol Reprod 2005;72:1241-55. https://doi.org/10.1095/biolreprod.104.038083
  28. Espey LL, Yoshioka S, Russell DL, Robker RL, Fujii S, Richards JS. Ovarian expression of a disintegrin and metalloproteinase with thrombospondin motifs during ovulation in the gonadotropinprimed immature rat. Biol Reprod 2000;62:1090-5. https://doi.org/10.1095/biolreprod62.4.1090
  29. Shindo T, Kurihara H, Kuno K, Yokoyama H, Wada T, Kurihara Y, et al. ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function. J Clin Invest 2000;105:1345-52. https://doi.org/10.1172/JCI8635
  30. Cal S, Obaya AJ, Llamazares M, Garabaya C, Quesada V, Lopez- Otin C. Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 2002;283:49-62. https://doi.org/10.1016/S0378-1119(01)00861-7
  31. Cuff JA, Clamp ME, Siddiqui AS, Finlay M, Barton GJ. JPred: a consensus secondary structure prediction server. Bioinformatics 1998;14:892-3. https://doi.org/10.1093/bioinformatics/14.10.892
  32. Cole C, Barber JD, Barton GJ. The Jpred 3 secondary structure prediction server. Nucleic Acids Res 2008;36:W197-201. https://doi.org/10.1093/nar/gkn238

피인용 문헌

  1. The Function and Roles of ADAMTS-7 in Inflammatory Diseases vol.2015, pp.None, 2014, https://doi.org/10.1155/2015/801546
  2. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family vol.16, pp.1, 2014, https://doi.org/10.1186/s13059-015-0676-3
  3. Primary ovarian insufficiency associated with autosomal abnormalities: from chromosome to genome-wide and beyond vol.23, pp.7, 2014, https://doi.org/10.1097/gme.0000000000000603
  4. Genomic study and Medical Subject Headings enrichment analysis of early pregnancy rate and antral follicle numbers in Nelore heifers1,2 vol.95, pp.11, 2014, https://doi.org/10.2527/jas2017.1752
  5. Aberrant DNA methylation of ADAMTS16 in colorectal and other epithelial cancers vol.18, pp.None, 2014, https://doi.org/10.1186/s12885-018-4701-2
  6. Hyalectanase Activities by the ADAMTS Metalloproteases vol.22, pp.6, 2014, https://doi.org/10.3390/ijms22062988