DOI QR코드

DOI QR Code

Immunomodulatory Effects of ZYM-201 on LPS-stimulated B Cells

  • Lee, Ye Eun (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Kim, Soochan (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Jung, Woong-Jae (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Lee, Hyung Soo (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Kim, Mi-Yeon (Department of Bioinformatics and Life Science, Soongsil University)
  • Received : 2014.09.17
  • Accepted : 2014.10.14
  • Published : 2014.10.31

Abstract

ZYM-201 is a methyl ester of triterpenoid glycoside from Sanguisorba officinalis which has been used for treatment of inflammatory and metabolic diseases. In this study, immunomodulatory effects of ZYM-201 on B cells were examined in vitro and in vivo. When splenocytes were activated with lipopolysaccharide (LPS), the major population which had shown an increase in cell numbers was B cells. However, when the B cells were treated with ZYM-201 after LPS activation, their cell numbers and the expression of major costimulatory molecules, CD80 and CD86, were decreased. Furthermore, the effect of LPS, which induces activation of NF-${\kappa}B$, was abolished by ZYM-201: LPS-stimulated B cells showed decrease of phosphorylation after treatment of ZYM-201. The same results were shown in vivo experiments. These results suggest that ZYM-201 may play a role in the modulation of inflammatory responses through inhibiting NF-${\kappa}B$ activation and downregulating the expression of costimulatory molecules on B cells.

Keywords

References

  1. East, J. 1955. The effect of certain plant preparations on the fertility of laboratory mammals. 4. Sanguisorba officinalis L. J. Endocrinol. 12: 273-276. https://doi.org/10.1677/joe.0.0120273
  2. Park, K. H., D. Koh, K. Kim, J. Park, and Y. Lim. 2004. Antiallergic activity of a disaccharide isolated from Sanguisorba officinalis. Phytother. Res. 18: 658-662. https://doi.org/10.1002/ptr.1545
  3. Goun, E. A., V. M. Petrichenko, S. U. Solodnikov, T. V. Suhinina, M. A. Kline, G. Cunningham, C. Nguyen, and H. Miles. 2002. Anticancer and antithrombin activity of Russian plants. J. Ethnopharmacol. 81: 337-342. https://doi.org/10.1016/S0378-8741(02)00116-2
  4. Kim, Y. H., C. B. Chung, J. G. Kim, K. I. Ko, S. H. Park, J. H. Kim, S. Y. Eom, Y. S. Kim, Y. I. Hwang, and K. H. Kim. 2008. Anti-wrinkle activity of ziyuglycoside I isolated from a Sanguisorba officinalis root extract and its application as a cosmeceutical ingredient. Biosci. Biotechnol. Biochem. 72: 303-311. https://doi.org/10.1271/bbb.70268
  5. Ban, J. Y., H. T. Nguyen, H. J. Lee, S. O. Cho, H. S. Ju, J. Y. Kim, K. Bae, K. S. Song, and Y. H. Seong. 2008. Neuroprotective properties of gallic acid from Sanguisorbae radix on amyloid beta protein (25--35)-induced toxicity in cultured rat cortical neurons. Biol. Pharm. Bull. 31: 149-153. https://doi.org/10.1248/bpb.31.149
  6. Wang, Z., W. T. Loo, N. Wang, L. W. Chow, D. Wang, F. Han, X. Zheng, and J. P. Chen. 2012. Effect of Sanguisorba officinalis L on breast cancer growth and angiogenesis. Expert Opin. Ther. Targets 16 Suppl 1: S79-89. https://doi.org/10.1517/14728222.2011.642371
  7. Tsukahara, K., S. Moriwaki, T. Fujimura, and Y. Takema. 2001. Inhibitory effect of an extract of Sanguisorba officinalis L. on ultraviolet-B-induced photodamage of rat skin. Biol. Pharm. Bull. 24: 998-1003. https://doi.org/10.1248/bpb.24.998
  8. Liu, X., Y. Cui, Q. Yu, and B. Yu. 2005. Triterpenoids from Sanguisorba officinalis. Phytochemistry 66: 1671-1679. https://doi.org/10.1016/j.phytochem.2005.05.011
  9. Mimaki, Y., M. Fukushima, A. Yokosuka, Y. Sashida, S. Furuya, and H. Sakagami. 2001. Triterpene glycosides from the roots of Sanguisorba officinalis. Phytochemistry 57: 773-779. https://doi.org/10.1016/S0031-9422(01)00083-8
  10. Cho, J. Y., E. S. Yoo, B. C. Cha, H. J. Park, M. H. Rhee, and Y. N. Han. 2006. The inhibitory effect of triterpenoid glycosides originating from Sanguisorba officinalis on tissue factor activity and the production of TNF-alpha. Planta Med. 72: 1279-1284. https://doi.org/10.1055/s-2006-947257
  11. Choi, J., M. Y. Kim, B. C. Cha, E. S. Yoo, K. Yoon, J. Lee, H. S. Rho, S. Y. Kim, and J. Y. Cho. 2012. ZYM-201 sodium succinate ameliorates streptozotocin-induced hyperlipidemic conditions. Planta Med. 78: 12-17. https://doi.org/10.1055/s-0031-1280219
  12. Choi, J., T. Yu, B. C. Cha, M. H. Rhee, E. S. Yoo, M. Y. Kim, J. Lee, and J. Y. Cho. 2011. Modulatory effects of ZYM-201 sodium succinate on dietary-induced hyperlipidemic conditions. Pharmazie 66: 791-797.
  13. Lu, Y. C., W. C. Yeh, and P. S. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42: 145-151. https://doi.org/10.1016/j.cyto.2008.01.006
  14. Alexander, C., and E. T. Rietschel. 2001. Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res. 7: 167-202.
  15. Akira, S., and S. Sato. 2003. Toll-like receptors and their signaling mechanisms. Scand. J. Infect. Dis. 35: 555-562. https://doi.org/10.1080/00365540310015683
  16. Buss, H., A. Dorrie, M. L. Schmitz, E. Hoffmann, K. Resch, and M. Kracht. 2004. Constitutive and interleukin-1-inducible phosphorylation of p65 NF-{kappa}B at serine 536 is mediated by multiple protein kinases including I{kappa}B kinase (IKK)-{alpha}, IKK{beta}, IKK{epsilon}, TRAF family member-associated (TANK)-binding kinase 1 (TBK1), and an unknown kinase and couples p65 to TATA-binding protein-associated factor II31-mediated interleukin-8 transcription. J. Biol. Chem. 279: 55633-55643. https://doi.org/10.1074/jbc.M409825200
  17. Suvas, S., V. Singh, S. Sahdev, H. Vohra, and J. N. Agrewala. 2002. Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma. J. Biol. Chem. 277: 7766-7775. https://doi.org/10.1074/jbc.M105902200
  18. Ogata, H., I. Su, K. Miyake, Y. Nagai, S. Akashi, I. Mecklenbrauker, K. Rajewsky, M. Kimoto, and A. Tarakhovsky. 2000. The toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells. J. Exp. Med. 192: 23-29. https://doi.org/10.1084/jem.192.1.23
  19. Collins, A. V., D. W. Brodie, R. J. Gilbert, A. Iaboni, R. Manso-Sancho, B. Walse, D. I. Stuart, P. A. van der Merwe, and S. J. Davis. 2002. The interaction properties of costimulatory molecules revisited. Immunity 17: 201-210. https://doi.org/10.1016/S1074-7613(02)00362-X
  20. Giannoukakis, N., C. A. Bonham, S. Qian, Z. Chen, L. Peng, J. Harnaha, W. Li, A. W. Thomson, J. J. Fung, P. D. Robbins, and L. Lu. 2000. Prolongation of cardiac allograft survival using dendritic cells treated with NF-kB decoy oligodeoxyribonucleotides. Mol. Ther. 1: 430-437. https://doi.org/10.1006/mthe.2000.0060
  21. Zhang, G., and S. Ghosh. 2001. Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. J. Clin. Invest. 107: 13-19. https://doi.org/10.1172/JCI11837
  22. Viatour, P., M. P. Merville, V. Bours, and A. Chariot. 2005. Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem. Sci. 30: 43-52. https://doi.org/10.1016/j.tibs.2004.11.009
  23. Pierce, J. W., M. A. Read, H. Ding, F. W. Luscinskas, and T. Collins. 1996. Salicylates inhibit I kappa B-alpha phosphorylation, endothelial-leukocyte adhesion molecule expression, and neutrophil transmigration. J. Immunol. 156: 3961-3969.
  24. Yin, M. J., Y. Yamamoto, and R. B. Gaynor. 1998. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396: 77-80. https://doi.org/10.1038/23948
  25. Yamamoto, Y., and R. B. Gaynor. 2001. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J. Clin. Invest. 107: 135-142. https://doi.org/10.1172/JCI11914

Cited by

  1. Anti-Diabetic and Hepato-Renal Protective Effects of Ziyuglycoside II Methyl Ester in Type 2 Diabetic Mice vol.7, pp.7, 2014, https://doi.org/10.3390/nu7075232
  2. Anti-Inflammatory and Antinociceptive Activities of Anthraquinone-2-Carboxylic Acid vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/1903849
  3. Syk and IRAK1 Contribute to Immunopharmacological Activities of Anthraquinone-2-carboxlic Acid vol.21, pp.6, 2014, https://doi.org/10.3390/molecules21060809
  4. Phytotherapeutic Activities of Sanguisorba officinalis and its Chemical Constituents: A Review vol.46, pp.2, 2014, https://doi.org/10.1142/s0192415x18500155