메타지놈 생물정보 분석 파이프라인의 비교 및 현황

  • 발행 : 2014.10.16

초록

키워드

참고문헌

  1. Haldelsman, J., et al., "Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products." Chem. Biol. Vol. 5, No. 10, pp 245-249, 1998. https://doi.org/10.1016/S1074-5521(98)90108-9
  2. Tanenbaum, D., et al., "The JCVI standard operating procedure for annotating prokaryotic metagenomic shotgun sequencing data", Stand. Genomic. Sci. Vol. 2, No.2, pp 229-237, 2010. https://doi.org/10.4056/sigs.651139
  3. Hunter, S., et al., "EBI metagenomics - a new resource for the analysis and archiving of metagenomic data", Nucleic Acids Res. Vol. 42, Database Issue, pp D600-D606,2014. https://doi.org/10.1093/nar/gkt961
  4. Treangen, T., et al., "MetAMOS: a modular and open somce metagenomic assembly and analysis pipeline", Genome Biol. Vol. 14, No.1, R2, 2013. https://doi.org/10.1186/gb-2013-14-1-r2
  5. Mavromatis, K., et al., "The DOE-JGI Standard Operating Procedure for the Annotations of Microbial Genomes.", Stand. Genomic. Sci. Vol. 1, No. 1, pp 63-67, 2009. https://doi.org/10.4056/sigs.632
  6. Kim, M., et al., "Analytical tools and databases for metagenomics in the next-generation sequencing era.", Genomics Inform. Vol. 11, No.3, 102-113,2013. https://doi.org/10.5808/GI.2013.11.3.102
  7. Meyer, F, et al., "The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes" BMC Bioinformatics, Vol. 9, No. 386, 2008.
  8. Abubuker, S., et al., "Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome", PLoS Comput. Biol. Vol. 8, No.6, e1002358, 2012. https://doi.org/10.1371/journal.pcbi.1002358
  9. Angiuoli, S., et al., "CloVR: a virtual machine for automated and portable sequence analysis from the desktop using cloud computing." BMC Bioinformatics Vol. 12, No. 356, 2011.
  10. Thomas, T, et al., "Metagenomics - a guide from sampling to data analysis", Microb. Inform Exp. Vol. 2, No. 1, 3, 2012. https://doi.org/10.1186/2042-5783-2-3
  11. Compeau, P., et al., "How to apply de Bruijn graphs to genome assembly", Nat. Biotechnol. Vol. 29, No. 11, pp 987-991, 2011. https://doi.org/10.1038/nbt.2023
  12. Luo, R., et al., "SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler.", Gigascience Vol. 1, No. 1, 2012.
  13. Zerbino, D., and Birney, E. "Velvet: algorithms for de novo short read assembly using de Bruijn graphs" Genome Res. Vol. 18, No.5, pp 821-829, 2008. https://doi.org/10.1101/gr.074492.107
  14. Peng, Y, et al., "IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth." Bioinformatics, Vol. 28, No. 11, pp 1420-1428, 2012. https://doi.org/10.1093/bioinformatics/bts174
  15. Bankevich, A, et al., "SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing." J. Comput. Biol. Vol. 19, No.5, pp 255-277, 2012.
  16. Sharpton, T, "An introduction to the analysis of shotgun metagenomic data.", Front Plant Sci. Vol. 5, 209, 2014.
  17. Huson, D., et al., "MEGAN analysis of metagenomic data.", Genome Res. Vol. 17, No.3, pp 377-386, 2007. https://doi.org/10.1101/gr.5969107
  18. Liu, B., et al., "Accurate and fast estimation of taxonomic profiles from metagenomic shotgun sequences.", BMC Genomics Vol. 12(Suppl 2), S4, 2011.
  19. McHardy, A, et al., "Accurate phylogenetic classification of variable-length DNA fragments.", Nat. Methods Vol. 4, No.1, pp 63-72, 2007. https://doi.org/10.1038/nmeth976
  20. Brady, A., and Salzberg, SL., "Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models.", Nat. Methods Vol. 6, No.9, pp 673-676, 2009. https://doi.org/10.1038/nmeth.1358
  21. Darling, A, et al., "PhyloSift: phylogenetic analysis of genomes and metagenomes." PeerJ. Vol. 2, pp e243, 2014. https://doi.org/10.7717/peerj.243
  22. Rho, M., et al., "FragGeneScan: predicting genes in short and error-prone reads.", Nucleic Acids Res. Vol. 38, No. 20, pp e191, 2010. https://doi.org/10.1093/nar/gkq747
  23. Hoff, K, et al., "Orphelia: predicting genes in metagenomic sequencing reads.", Nucleic Acids Res. Vol. 37, pp W101-W105, 2009. https://doi.org/10.1093/nar/gkp327
  24. Noguchi, H, et al., "MetaGene: prokaryotic gene finding from environmental genome shotgun sequences." Nucleic Acids Res. Vol. 34, No. 19, pp 5623-5630, 2006. https://doi.org/10.1093/nar/gkl723
  25. Zhu, W, et al., "Ab initio gene identification in metagenomic sequences" Nucleic Acids Res. Vol. 38, No. 12, pp e132, 2010. https://doi.org/10.1093/nar/gkq275
  26. Noguchi, H, et al., ''MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes." DNA Res. Vol. 15, No.6, pp 387-396, 2008. https://doi.org/10.1093/dnares/dsn027
  27. Lowe, T, and Eddy, S., "tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence" Nucleic Acids Res. Vol. 25, No. 5, pp 955-964, 1997. https://doi.org/10.1093/nar/25.5.0955
  28. Bland, c., et al., "CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats" BMC Bininformatics Vol. 8, No. 209, 2007.
  29. Sita, J., et al., "CRISPRmap: an automated classification of repeat conservation in prokatyotic adaptive immune systems" Nucleic Acids Res. Vol. 41 , No. 17, pp 8034-8044, 2013. https://doi.org/10.1093/nar/gkt606
  30. Finn, R., et al., "Pfam: the protein families database" Nucleic Acids Res. Vol. 42, Database Issue, pp D222-D230, 2014. https://doi.org/10.1093/nar/gkt1223
  31. Haft, D., et al., "The TIGRFAMs database of protein families" Nucleic Acid Res. Vol. 31 , No. 1, pp 371-373, 2003. https://doi.org/10.1093/nar/gkg128
  32. Tatusov, R, et al., "The COG database: a tool for genome-scale analysis of protein functions and evolution" Nucleic Acids Res. Vol. 28, No. 1, pp 33-36, 2000. https://doi.org/10.1093/nar/28.1.33
  33. Powell, S., et al., "eggNOG v4.0: nested orthology inference across 3686 organisms." Nucleic Acis Res. Vol. 42, Database Issue, pp D231-D239, 2014. https://doi.org/10.1093/nar/gkt1253
  34. Ashburner, M., et al., "Gene Ontology: tool for the unification of biology" Nat. Genetics, Vol. 25, pp 25-29, 2000. https://doi.org/10.1038/75556
  35. Claudel Renard, c., et al., ''Enzyme specific profiles for genome annotation: PRIAM" Nucleic Acid Res. Vol. 31, No. 22, pp 6633-6639,2003. https://doi.org/10.1093/nar/gkg847
  36. Kanehisa, M., et al., "KEGG: kyoto encyclopedia of genes and genomes" Nucleic Acids Res. Vol. 28, No. 1, pp 27-30, 2000. https://doi.org/10.1093/nar/28.1.27
  37. Overbeek, R, et al., "The SEED: a peer-to-peer environment for genome annotation" Commun. ACM. Vol. 47, No. 11, pp 46-51, 2004.
  38. Kristiansson, E., et al., "ShotgunFunctionalizeR: an R-package for functional comparison of metagenomes" Bioinformatics, Vol. 25, No. 20, pp 2737-2738, 2009. https://doi.org/10.1093/bioinformatics/btp508
  39. Lingner, T., et al., "CoMet - a web server for comparative functional profiling of metagenomes" Nucleic Acids Res. Vol. 39 Web Server Issue, pp W518-W523, 2011. https://doi.org/10.1093/nar/gkr388
  40. Albertsen, M., "Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes", Nat. Biotechnol. Vol. 31, No. 6, pp 533-538, 2013. https://doi.org/10.1038/nbt.2579