앙상블 기계학습을 통한 유전자 발현 조절 기작 분석 동향

  • Published : 2014.10.16

Abstract

Keywords

References

  1. Das, Modan K., and Ho-Kwok Dai. "A survey of DNA motif finding algorithms." BMC bioinformatics 8. Suppl 7 (2007): S21.
  2. Warner, Jason B., et al. "Systematic identification of mammalian regulatory motifs' target genes and functions." Nature methods 5.4 (2008): 347-353. https://doi.org/10.1038/nmeth.1188
  3. Tumer, Kagan, and Joydeep Ghosh. "Error correlation and error reduction in ensemble classifiers." Connection science 8.3-4 (1996): 385-404. https://doi.org/10.1080/095400996116839
  4. Tompa, Martin, et al. "Assessing computational tools for the discovery of transcription factor binding sites." Nature biotechnology 23.1 (2005): 137-144. https://doi.org/10.1038/nbt1053
  5. Che, Dongsheng, et al. "BEST: binding-site estimation suite of tools." Bioinformatics 21.12 (2005): 2909-2911. https://doi.org/10.1093/bioinformatics/bti425
  6. Chakravarty, A., et al. "A parameter-free algorithm for improved de novo identification of transcription factor binding sites." BMC Bioinformatics 8 (2007): 29. https://doi.org/10.1186/1471-2105-8-29
  7. Carlson, Jonathan M., et al. "SCOPE: a web server for practical de novo motif discovery." Nucleic acids research 35.suppl 2 (2007): W259-W264. https://doi.org/10.1093/nar/gkm310
  8. Hughes, Jason D., et al. "Computational identification of Cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae." Journal of molecular biology 296.5 (2000): 1205-1214. https://doi.org/10.1006/jmbi.2000.3519
  9. Liu, Xiaole, Douglas L. Brutlag, and Jun S. Liu. "BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes." Pacific symposium on biocomputing. Vol. 6. No. 2001. 2001.
  10. Hertz, Gerald Z., and Gary D. Stormo. "Identifying DNA and protein patterns with statistically significant alignments of multiple sequences." Bioinformatics 15.7 (1999): 563-577. https://doi.org/10.1093/bioinformatics/15.7.563
  11. Bailey, Timothy L., and Charles Elkan. "Fitting a mixture model by expectation maximization to discover motifs in bipolymers." (1994): 28-36.
  12. Jensen, Shane T., and Jun S. Liu. "BioOptimizer: a Bayesian scoring function approach to motif discovery." Bioinformatics 20.10 (2004): 1557-1564. https://doi.org/10.1093/bioinformatics/bth127
  13. Carlson, Jonathan M., Arijit Chakravarty, and Robert H. Gross. "BEAM: a beam search algorithm for the identification of cis-regulatory elements in groups of genes." Journal of Computational Biology 13.3 (2006): 686-701. https://doi.org/10.1089/cmb.2006.13.686
  14. Carlson, Jonathan M., et al. "Bounded search for de novo identification of degenerate cis-regulatory elements." BMC bioinformatics 7.1 (2006): 254. https://doi.org/10.1186/1471-2105-7-254
  15. Chakravarty, Arijit, et al. "SPACER: identification of cis-regulatory elements with non-contiguous critical residues." Bioinformatics 23.8 (2007): 1029-1031. https://doi.org/10.1093/bioinformatics/btm041
  16. Huber, Bertrand R., and Martha L. Bulyk. "Meta-analysis discovery of tissue-specific DNA sequence motifs from mammalian gene expression data." BMC bioinformatics 7.1 (2006): 229. https://doi.org/10.1186/1471-2105-7-229
  17. Huang, Hsien Da, et al. "Identifying transcriptional regulatory sites in the human genome using an integrated system." Nucleic acids research 32.6 (2004): 1948-1956. https://doi.org/10.1093/nar/gkh345
  18. Romer, Katherine A, Guy-Richard Kayombya, and Ernest Fraenkel. "WebMOTIFS: automated discovery, filtering and scoring of DNA sequence motifs using multiple programs and Bayesian approaches." Nucleic acids research 35. suppl 2 (2007): W217-W220. https://doi.org/10.1093/nar/gkm376
  19. Liu, X. Shirley, Douglas L. Brutlag, and Jun S. Liu. "An algorithm for finding protein - DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments." Nature biotechnology 20.8 (2002): 835-839. https://doi.org/10.1038/nbt717
  20. Lawrence, Charles E., et al. "Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment." science 262.5131 (1993): 208-214. https://doi.org/10.1126/science.8211139
  21. Pavesi, Giulio, et al. "MoD Tools: regulatory motif discovery in nucleotide sequences from co-regulated or homologous genes." Nucleic acids research 34.suppl 2 (2006): W566-W570. https://doi.org/10.1093/nar/gkl285
  22. Pavesi, Giulio, et al. "Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes." Nucleic acids research 32.suppl 2 (2004): W199-W203. https://doi.org/10.1093/nar/gkh465
  23. Hu, Jianjun, Yifeng D. Yang, and Daisuke Kihara. "EMD: an ensemble algorithm for discovering regulatory motifs in DNA sequences." BMC bioinformatics 7.1 (2006): 342. https://doi.org/10.1186/1471-2105-7-342
  24. Thijs, Gert, et al. "A Gibbs sampling method to detect overrepresented motifs in the upstream regions of coexpressed genes." Journal of Computational Biology 9.2 (2002): 447-464. https://doi.org/10.1089/10665270252935566
  25. Wijaya, Edward, et al. "MotifVoter: a novel ensemble method for fine-grained integration of generic motif finders." Bioinformatics 24.20 (2008): 2288-2295. https://doi.org/10.1093/bioinformatics/btn420
  26. Eskin, Eleazar, and Pavel A Pevzner. "Finding composite regulatory patterns in DNA sequences." Bioinformatics 18.suppl 1 (2002): S354-S363. https://doi.org/10.1093/bioinformatics/18.suppl_1.S354
  27. Wijaya, Edward, et al. "Detection of generic spaced motifs using submotif pattern mining." Bioinformatics 23.12 (2007): 1476-1485. https://doi.org/10.1093/bioinformatics/btm118
  28. Workman, C. T., and G. D. Stormo. "ANN-Spec: a method for discovering transcription factor binding sites with improved specificity." Pac Symp Biocomput. Vol. 5. 2000.
  29. Ao, Wanyuan, et al. "Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR." Science 305.5691 (2004): 1743-1746. https://doi.org/10.1126/science.1102216
  30. Lewis, Benjamin P., et al. "Prediction of mammalian microRNA targets." Cell 115.7 (2003): 787-798. https://doi.org/10.1016/S0092-8674(03)01018-3
  31. Enright, Anton J., et al. "MicroRNA targets in Drosophila." Genome biology 5.1 (2004): R1-R1.
  32. Rehmsmeier, Marc, et al. "Fast and effective prediction of microRNA/target duplexes." Rna 10.10 (2004): 1507-1517. https://doi.org/10.1261/rna.5248604
  33. Maragkakis, Manolis, et al. "Accurate microRNA target prediction correlates with protein repression levels." BMC bioinformatics 10.1 (2009): 295. https://doi.org/10.1186/1471-2105-10-295
  34. Wang, Xiaowei, and Issam M. E1 Naqa. "Prediction of both conserved and nonconserved microRNA targets in animals." Bioinformatics 24.3 (2008): 325-332. https://doi.org/10.1093/bioinformatics/btm595
  35. Kertesz, Michael, et al. "The role of site accessibility in microRNA target recognition." Nature genetics 39.10 (2007): 1278-1284. https://doi.org/10.1038/ng2135
  36. Grun, Dominic, et al. "microRNA target predictions across seven Drosophila species and comparison to mammalian targets." PLoS computational biology 1.1 (2005): e13. https://doi.org/10.1371/journal.pcbi.0010013
  37. SaeTrom, O. L. A , OLASNOVE, and PALSAETROM. "Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms." Rna 11.7 (2005): 995-1003. https://doi.org/10.1261/rna.7290705
  38. Sturm, Marin, et al. "TargetSpy: a supervised machine learning approach for microRNA target prediction." BMC bioinformatics 11.1 (2010): 292. https://doi.org/10.1186/1471-2105-11-292
  39. Bandyopadhyay, Sanghamitra, and Ramkrishna Mitra. "TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples." Bioinformatics 25.20 (2009): 2625-2631. https://doi.org/10.1093/bioinformatics/btp503
  40. Friedman, Yitzhak, Guy Naamati, and Michal Linial. "MiRror: a combinatorial analysis web tool for ensembles of microRNAs and their targets." Bioinformatics 26.15 (2010): 1920-1921. https://doi.org/10.1093/bioinformatics/btq298
  41. Nam, Seungyoon, et al. "MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression." Nucleic acids research 37.suppl 2 (2009): W356-W362. https://doi.org/10.1093/nar/gkp294
  42. Bisognin, Andrea, et al. "MAGIA2: from miRNA and genes expression data integrative analysis to microRNA - transcription factor mixed regulatory circuits (2012 update)." Nucleic acids research (2012): gks460.
  43. Ding, Jiandong, et al. "Genome-wide search for miRNA-target interactions in Arabidopsis thaliana with an integrated approach." BMC genomics 13.Suppl 3 (2012): S3.
  44. Xiao, Feifei, et al. "miRecords: an integrated resource for microRNA - target interactions." Nucleic acids research 37.suppl 1 (2009): 0105-0110.
  45. Cho, Sooyoung, et al. "miRGator v2. 0: an integrated system for functional investigation of microRNAs." Nucleic acids research 39.suppl 1 (2011): D158-D162. https://doi.org/10.1093/nar/gkq1094
  46. Hsu, Paul WC, et al. "miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes." Nucleic acids research 34.suppl 1 (2006): D135-D139. https://doi.org/10.1093/nar/gkj135
  47. Alexiou, Panagiotis, et al. "miRGen 2.0: a database of microRNA genomic information and regulation." Nucleic acids research (2009): gkp888.
  48. Coronnello, Claudia, and Panayiotis V. Benos. "ComiR: combinatorial microRNA target prediction tool." Nucleic acids research 41.W1 (2013): W159-W164. https://doi.org/10.1093/nar/gkt379
  49. Yu, Seunghak, et al. "Ensemble learning can significantly improve human microRNA target prediction." Methods (2014).
  50. Betel, Doron, et al. "Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites." Genome biology 11.8 (2010): R90. https://doi.org/10.1186/gb-2010-11-8-r90