References
- Zhao, Y, et al., "Differentially expressed gene profiles between multidrug resistant gastric adenocarcinoma cells and their parental cells", Cancer letters, Vol. 185, No. 2, pp 211-218, 2002. https://doi.org/10.1016/S0304-3835(02)00264-1
- Xu, J., et al., "Identification of differentially expressed genes in human prostate cancer using subtraction and microarray", Cancer research, Vol. 60, No. 6, pp 1677-1682, 2000.
- Hough, C., et al., "Large-scale serial analysis of gene expression reveals genes differentially expressed in ovarian cance", Cancer Research, Vol. 60, No. 22, pp 6281-6287, 2000.
- Gatta, D., et al., "Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL", Nature medicine, Vol. 18, No. 3, pp 436-440, 2012. https://doi.org/10.1038/nm.2610
- Ravasi, T., et al., "An atlas of combinatorial transcriptional regulation in mouse and man", Cell, Vol. 140, No. 5, pp 744-752, 2010. https://doi.org/10.1016/j.cell.2010.01.044
- Sanders, D.A., et al., "Genome-wide mapping of FPXM1 binding reveals co-binding with estrogen receptor alpha in breast cancer cells", Genome biology, Vol. 14, No. 1, pp R6, 2013 https://doi.org/10.1186/gb-2013-14-1-r6
- Margolin, AA, et al., "ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context", BMC bioinformatics, Vol. 7, No. Suppl 1, pp S7, 2006.
- Fletcher, M, et al., "Master regulators of FGFR2 signalling and breast cancer risk", Nature communications, Vol. 4, No. 2464, 2013.
- Stolovitzky, G., et al., "Dialogue on Reverse-Engineering Assessment and Methods", Annals of the New York Academy of Sciences, Vol. 1115, No. 1, pp 1-22, 2007. https://doi.org/10.1196/annals.1407.021
- Marbach, D., et al., "Wisdom of crowds for robust gene network inference", Nature methods, Vol. 9, No. 8, pp 796-804, 2012. https://doi.org/10.1038/nmeth.2016
- Soneson, C. and Delorenzi, M., "A comparison of methods for differential expression analysis of RNA-seq data", BMC bioinformatics, Vol. 14, No. 1, pp 91, 2013. https://doi.org/10.1186/1471-2105-14-91
- Zwiener, I., et al., "Transformina RNA-Seq data to improve the perfOlmance of prognostic gene slgnatures", PloS one, Vol. 9, No. 1, pp e85150, 2014 https://doi.org/10.1371/journal.pone.0085150
- Zhang, L. and Mallick, B.K., "Inferring gene networks from discrete expression data", Biostatistics, Vol. 14, No. 4, pp 708-722, 2013 https://doi.org/10.1093/biostatistics/kxt021
- Gallopin, M., et al., "A Hierarchical Poisson Log-Normal Model for Network Inference from RNA Sequencing Data", PloS one, Vol. 8, No. 10, pp e77503, 2013. https://doi.org/10.1371/journal.pone.0077503
- Siletz, A., et al., "Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models", PloS one, Vol. 8, No. 4, pp e57180, 2013. https://doi.org/10.1371/journal.pone.0057180
- Wan, J., et al., "Integrative analysis of tissue-specific methylation and alternative splicing identifies conserved transcription factor binding motifs", Nucleic acids research, Vol. 41, No. 18, pp 8503-8514, 2013. https://doi.org/10.1093/nar/gkt652
- Zhang, X., et al., "NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference", Bioinformatics, Vol. 29, No. 1, pp 106-113, 2013. https://doi.org/10.1093/bioinformatics/bts619
- Haury, A.C., et al.,",TIGRESS: trustful inference of gene regulation using stability selection", BMC systems biology, Vol. 6, No. 1, pp 145, 2012. https://doi.org/10.1186/1752-0509-6-145
- Borate, B. R., et al., "Comparison of threshold selection methods for microarray gene co-expression matrices", BMC research notes, Vol. 2, No. 1, pp 240, 2009. https://doi.org/10.1186/1756-0500-2-240
- Faith, J.J., et al., "Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles", Vol. 5, No. 1, pp e8, 2007.