DOI QR코드

DOI QR Code

Fabrication of Ag Grid Patterned PET Substrates by Thermal Roll-Imprinting for Flexible Organic Solar Cells

가열롤 임프린팅 방법을 이용한 유연 유기태양전지용 Ag 그리드 패턴 PET 기판 제작

  • Cho, Jung Min (School of Global Convergence Studies, Hanbat University) ;
  • Jo, Jeongdai (Department of Printed Electronics, Korea Institute of Machinery and Materials) ;
  • Kim, Taeil (School of Global Convergence Studies, Hanbat University) ;
  • Kim, Dong Soo (School of Global Convergence Studies, Hanbat University)
  • 조정민 (한밭대학교 글로벌융합학부) ;
  • 조정대 (한국기계연구원) ;
  • 김태일 (한밭대학교 글로벌융합학부) ;
  • 김동수 (한밭대학교 글로벌융합학부)
  • Received : 2014.09.11
  • Accepted : 2014.10.13
  • Published : 2014.11.01

Abstract

Silver (Ag) grid patterned PET substrates were manufactured by thermal roll-imprinting methods. We coated highly conductive layer (HCL) as a supply electrode on the Ag grid patterned PET in the three kinds of conditions. One was no-HCL without conductive PEDOT:PSS on the Ag grid patterned PET substrate, another was thin-HCL coated with ~50 nm thickness of conductive PEDOT:PSS on the Ag grid PET, and the other was thick-HCL coated with ~95 nm thickness of conductive PEDOT:PSS. These three HCLs in order showed 73.8%, 71.9%, and 64.7% each in transmittance, while indicating $3.84{\Omega}/{\Box}$, $3.29{\Omega}/{\Box}$, and $2.65{\Omega}/{\Box}$ each in sheet resistance. Fabrication of organic solar cells (OSCs) with HCL Ag grid patterned PET substrates showed high power conversion efficiency (PCE) on the thin-HCL device. The thick-HCL device decreased efficiency due to low open circuit voltage ($V_{OC}$). And the Ag grid pattern device without HCL had the lowest energy efficiency caused by quite low short current density ($J_{SC}$).

Keywords

References

  1. Brabec, C. J., "Organic Photovoltaics: Technology and Market," Sol. Energ. Mat. Sol. C., Vol. 83, No. 2, pp. 273-292, 2004. https://doi.org/10.1016/j.solmat.2004.02.030
  2. Li, G., Shrotriya, W., Huang, J., Yao, Y., Moriarty, T., et al., "High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends," Nat. Mater., Vol. 4, No. 11, pp. 864-868, 2005. https://doi.org/10.1038/nmat1500
  3. Wang, J.-C., Weng, W.-T., Tsai, M.-Y., Lee, M.-K., Horng, S.-F., et al., "Highly Efficient Flexible Inverted Organic Solar Cells Using Atomic Layer Deposited ZnO as Electron Selective Layer," J. Mater. Chem., Vol. 20, No. 5, pp. 862-866, 2010. https://doi.org/10.1039/B921396A
  4. Kaltenbrunner, M., White, M. S., Glowacki, E. D., Sekitani, T., Someya, T., et al., "Ultrathin and Lightweight Organic Solar Cells with High Flexibility," Nat. Commun., Vol. 3, Paper No. 770, 2012. https://doi.org/10.1038/ncomms1772
  5. Krebs, F. C., "Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques," Sol. Energ. Mat. Sol. C., Vol. 93, No. 4, pp. 394-412, 2009. https://doi.org/10.1016/j.solmat.2008.10.004
  6. Andersen, T. R., Dam, H. F., Hosel, M., Helgesen, M., Carle, J. E., et al., "Saclable, Ambient Atmosphere Roll-to-Roll Manufacture of Encapsulated Large Area, Flexible Organic Tandem Solar Cells Modules," Energy Environ. Sci., Vol. 7, No. 9, pp. 2925-2933, 2014. https://doi.org/10.1039/C4EE01223B
  7. Koidis, C., Logothetidis, S., Ioakeimidis, A., Laskarakis, A., and Kapnopoulos, C., "Key Factors to Improve the Efficiency of Roll-to-Roll Printed Organic Photovoltaics," Org. Electron., Vol. 14, No. 7, pp. 1744-1748, 2013. https://doi.org/10.1016/j.orgel.2013.04.015
  8. Apilo, P., Hiltunen, J., Valinmaki, M., Heinilehto, S., Sliz, R., and Hast, J., "Roll-to-Roll Gravure Printing of Organic Photovoltaic Modules-Insulation of Processing Defects by an Interfacial Layer," Prog. Photovolt: Res. Appl., DOI: 10.1002/pip.2508.
  9. Lin, H. K., Chiu, S. M., Cho, T. P., and Huang, J. C., "Improved Bending Fatigue Behavior of Flexible PET/ITO Film with Thin Metallic Glass Interlayer," Mater. Lett., Vol. 113, pp. 182-185, 2013. https://doi.org/10.1016/j.matlet.2013.09.084
  10. Lee, S., Kwon, J.-Y., Yoon, D., Cho, H., You, J. Y., et al., "Bendability Optimization of Flexible Optical Nanoelectronics via Neutral Axis Engineering," Nanoscale Res. Lett., Vol. 7, No. 1, pp. 1-7, 2012. https://doi.org/10.1186/1556-276X-7-1
  11. Inganas, O., "Organic photovoltaics: Avoiding indium," Nature Photonics, Vol. 5, No. 4, pp. 201-202, 2011. https://doi.org/10.1038/nphoton.2011.46
  12. Barnes, T. M., Bergeson, J. D., Tenent, R. C., Larsen, B. A., Teeter, G., et al., "Carbon Nanotube Network Electrodes Enabling Efficient Organic Solar Cells without a Hole Transport Layer," Appl. Phys. Lett., Vol. 96, No. 24, pp. 3309-3, 2010.
  13. Gaynor, W., Burkhard, G. F., McGehee, M. D., and Peumans, P., "Smooth Nanowire/Polymer Composite Transparent Electrodes," Adv. Mater., Vol. 23, No. 26, pp. 2905-2910, 2011. https://doi.org/10.1002/adma.201100566
  14. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., et al., "Roll-to-Roll Production of 30-inch Graphene Films for Transparent Electrodes," Nat. Nanotechnol., Vol. 5, No. 8, pp. 574-578, 2010. https://doi.org/10.1038/nnano.2010.132
  15. Yu, J.-S., Jung, G. H., Jo, J., Kim, J. S., Kim, J. W., et al., "Transparent Conductive Film with Printable Embedded Patterns for Organic Solar Cells," Sol. Energ. Mat. Sol. C., Vol. 109, pp. 142-147, 2013. https://doi.org/10.1016/j.solmat.2012.10.013
  16. van de Wiel, H., Galagan, Y., Van Lammeren, T., De Riet, J., Gilot, J., et al., "Roll-to-Roll Embedded Conductive Structures Integrated into Organic Photovoltaic Devices," Nanotechnology, Vol. 24, No. 48, Paper No. 484014, 2013. https://doi.org/10.1088/0957-4484/24/48/484014
  17. Cho, J. M., Kwak, S.-W., Aqoma, H., Kim, J. W., Shin, W. S., et al., "Effects of Ultraviolet-ozone Treatment on Organic-Stabilized ZnO Nanoparticlebased Electron Transporting Layers in Inverted Polymer Solar Cells," Org. Electron., Vol. 15, pp. 1942-1950, 2014. https://doi.org/10.1016/j.orgel.2014.05.016
  18. Shrotriya, V., Li, G., Chu, C.-W., and Yang, Y., "Transition Metal Oxides as the Buffer Layer for Polymer Photovoltaic Cells," Appl. Phys. Lett., Vol. 88, Paper No. 073508, 2006. https://doi.org/10.1063/1.2174093
  19. Sapp, S., Luebben, S., Losovyj, Ya. B., Jeppson, P., Schulz, D. L., and Caruso, A. N., "Work function and implications of doped poly(3,4-ethylenedioxythiophene)-co-poly(ethylene glycol)," Appl. Phys. Lett., Vol. 88, No. 15, Paper No. 152107, 2006. https://doi.org/10.1063/1.2193399