DOI QR코드

DOI QR Code

Patient Flow Monitoring System based on Rheumatic Patient History Data

류머티스 환자 이력 데이터에 기반한 환자 플로우 모니터링 시스템

  • 김준우 (동아대학교 산업경영공학과) ;
  • 이상철 (그리스도대학교 경영학부) ;
  • 박상찬 (경희대학교 의료경영학과)
  • Received : 2014.09.02
  • Accepted : 2014.09.15
  • Published : 2014.10.28

Abstract

In recent, hospital information systems are widely used to electronically record, manage and share the data collected in hospitals. Such systems have contributed greatly to improving the work efficiency in modern hospitals, however, the collected data concerning the patients should be appropriately processed and reused to provide the healthcare service providers with decision supports. Especially, this paper proposes the patient flow monitoring system for the operations management of the outpatient department for patients with chronic diseases, and discusses the related issues. The proposed system visualizes the standard process model extracted from the patient history data and various performance measures, and this enables the managers to evaluate and enhance the operations of the outpatient clinic. In this paper, the patient flow monitoring system is applied to the rheumatology clinic, and the prototype system optimized for I-pad is illustrated.

최근 병원에서 수집되는 데이터를 전자적으로 저장, 관리 및 공유하기 위하여 병원정보시스템이 널리 활용되고 있다. 이러한 시스템들은 현대 병원들의 업무 효율성 제고에 크게 기여해왔으나, 건강관리 서비스 제공자들의 의사 결정을 지원하기 위해서는 수집된 환자 관련 데이터를 적절히 가공하고 재사용하는 것이 필요하다. 특히, 본 논문은 만성 질환과 관련된 외래진료과 운영관리를 위한 환자 플로우 모니터링을 제안하고, 이와 관련된 사항들에 대해 토의하고자 한다. 제안하는 시스템은 환자 이력 데이터에 프로세스 마이닝 기법을 적용하여 추출한 표준 프로세스 모형 및 여러 가지 평가 지표들을 시각화하며, 이를 통해 관리자들은 외래진료과의 운영을 평가하고 개선할 수 있다. 본 논문에서는 환자 플로우 모니터링 시스템을 류머티스 진료과에 적용하였으며, 아이패드 기기에 최적화된 프로토타입 시스템을 예시로 보이고자 한다.

Keywords

References

  1. C. Lovis, "Clinical Information Systems: Cornerstone for an Efficient Hospital Management," Studies in Health Technology and Informatics, Vol.169, pp.992-995, 2011.
  2. D. K. Park, E. Y. Jung, B. H. Jeong, B. C. Moon, H. W. Kang, H. Tchah, G. S. Han, W. S. Cheng and Y. H. Lee, "Smart Information System For Gachon University Gil Hospital," Healthcare Informatics Research, Vol.18, No.1, pp.74-83, 2012. https://doi.org/10.4258/hir.2012.18.1.74
  3. 조광문, 한군희, "병원 업무 효율화를 위한 원무시스템 설계", 한국콘텐츠학회 2005 추계종합학술대회 논문집, Vol.3, No.2, pp.616-621, 2005.
  4. 김귀정, "의료기관 전문 의료용 CRM 프레임 설계," 한국콘텐츠학회논문지, Vol.8, No.12, pp.20-27, 2008. https://doi.org/10.5392/JKCA.2008.8.12.020
  5. 유영미, 유일, 김소라, "간호사의 병원정보시스템 (HIS) 만족도 영향요인-지각된 HIS 품질과 개인 및 조직특성을 중심으로", 한국콘텐츠학회논문지, Vol.13, No.6, pp.438-449, 2013. https://doi.org/10.5392/JKCA.2013.13.06.438
  6. B. Martinez-Perez, I. de la Torre-Diez, M. Lopez-Coronado, B. Sainz-de-Abajo, M. Robles and J. M. Garcia-Gomez, "Mobile Clinical Decision Support Systems and Applications: A Literature and Commercial Review," Journal of Medical Systems, Vol.38, No.1, pp.1-10, 2014. https://doi.org/10.1007/s10916-013-0001-1
  7. M. Prior, M. Guerin, and K. Grimmer-Somers, "The Effectiveness of Clinical Guideline Implementation Strategies-A Synthesis of Systematic Review Findings," Journal of Evaluation in Clinical Practice, Vol.14, No.5, pp.888-897, 2008. https://doi.org/10.1111/j.1365-2753.2008.01014.x
  8. T. Rotter, L. Kinsman, E. James, A. Machotta, H. Gothe, J. Willis, P. Snow, and J. Kugler, "Clinical Pathways: Effects on Professional Practice, Patient Outcomes, Length of Stay and Hospital Costs," Cochrane Database of Systematic Reviews, Vol.3, No.3, pp.1-163, 2010.
  9. S. M. Naureckas, R. Zweigoron, H. K. Susan, E. O. B. Kaleba, S. J. Pohl, and A. J. Ariza, "Developing an Electronic Clinical Decision Support system to Promote Guideline Adherence for Healthy Weight Management and Cardiovascular Risk Reduction in Children: A Progress Update," Translational Behavioral Medicine, Vol.1, No.2, pp.103-107, 2011. https://doi.org/10.1007/s13142-011-0019-1
  10. M. J. Romano and R. S. Stafford, "Electronic Health Records and Clinical Decision Support Systems: Impact on National Ambulatory Care Quality," Archives of Internal Medicine, Vol.171, No.10, pp.897-903, 2011.
  11. G. W. Procop, L. M. Yerian, R. Wylie, A. M. Harrison, and K. Kottke-Marchant, "Duplicate Laboratory Test Reduction Using a Clinical Decision Support Tool," American Journal of Clinical Pathology, Vol.141, No.5, pp.718-723, 2014. https://doi.org/10.1309/AJCPOWHOIZBZ3FRW
  12. S. Tsumoto, S. Hirano, and Y. Tsumoto, "Information Reuse in Hospital Information Systems: A Data Mining Approach," Proceedings of the IEEE International Conference on Information Reuse and Integration, pp.172-176, 2011.
  13. R. S. Mans, W. M. P. van der Aalst, R. J. Vanwersch, and A. J. Moleman, "Process Mining in Healthcare: Data Challenges When Answering Frequently Posed Questions," In Process Support and Knowledge Representation in health Care, Springer Berlin Heidelberg, pp.140-153, 2013.
  14. W. M. P. van der Aalst, Process Mining, Springer, 2011.
  15. P. N. Tan, M.Steinbach and V. Kumar, Introduction to Data Mining, Addison-Wesley, 2005.
  16. M.K. Obenshain, "Application of Data Mining Techniques to Healthcare Data," Infection Control and Hospital Epidemiology, Vol.25, No.8, pp.690-695, 2004 . https://doi.org/10.1086/502460
  17. H. C. Koh and G. Tan, "Data Mining Applications in Healthcare," Journal of Healthcare Information Management, Vol.19, No.2, pp.65-72, 2011.
  18. L. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition," Proceedings of the IEEE, Vol.77, No.2, pp.257-286, 1989. https://doi.org/10.1109/5.18626
  19. A. Rebuge and D. R. Ferreira, "Business Process Analysis in Healthcare Environments: A Methodology based on Process Mining," Information Systems, Vol.37, No.2, pp.99-116, 2012. https://doi.org/10.1016/j.is.2011.01.003
  20. T. Blum, N. Padoy, H. Feussner and N, Navab, "Workflow Mining for Visualization and Analysis of Surgeries," International Journal of Computer Assisted Radiology and Surgery, Vol.3, No.5, pp.379-386, 2008. https://doi.org/10.1007/s11548-008-0239-0
  21. R. S. Mans, M. H. Schonenberg, G. Leonardi, S. Panzarasa, A. Cavallini, S. Quaglini, and W. M. P. van der Aalst, "Process Mining Techniques: An Application to Stroke Care," Studies in Health Technology and Informatics, Vol.136, pp.573-578, 2008.
  22. R. S. Mans, M. H. Schonenberg, M. Song, W. M. P. van der Aalst, and P. J. Bakker, "Application of Process Mining in Healthrcare - A Case Study in a Dutch Hospital," In Biomedical Engineering Systems and Technologies, Springer, pp.425-438, 2009.
  23. J. Poelmans, G. Dedene, G. Verheyden, H. van der Mussele, S. Viaene, and E. Peters, "Combining Business Process and Data Discovery Techniques for Analyzing and Improving Integrated Care Pathways," In Advances in Data Mining: Applications and Theoretical Aspects, Springer, pp.505-517, 2010.
  24. C. W. Gunther, A. Rozinat, W. M. P. van der Aalst, and K. van Uden, "Monitoring Deployed Application Usage with Process Mining," BPM Center Report BPM-08-11, pp.1-8, 2008.
  25. L. Perimal-Lewis, S. Qin, C. Thompson, and P. Hakendorf, "Gaining Insight from Patient Journey Data Using a Process-Oriented Analysis Approach," Proceedings of the Fifth Australian Workshop on Health Informatics and Knowledge Management, Vol.129, pp.59-66, 2012.
  26. http://www.promtools.org
  27. http://www.fluxicon.com
  28. C. W. Gunther and W. M. P. van der Aalst, "Fuzzy Mining - Adaptive Process Simplification based on Multi-Perspective Metrics," In Business Process Management, Springer, pp.328-343, 2007.