References
- Azzar, L., Benamar, R. and White, R.G. (2002), "A semi-analytical approach to the non-linear dynamic response of beams at large amplitudes", J. Sound Vib., 224(2),183-207.
- Bors, I., Milchis, T. and Popescu, M. (2013), "Nonlinear vibration of elastic beams", Acta Tech. Nap., Civil Eng. Arch., 56(1), 51-56.
- Caddemi, S., Calio, I. and Rapicavoli, D. (2013), "A novel beamfinite element with singularities for the dynamic analysis of discontinuous frames", Arch. Appl. Mech., 83(10), 1451-1468. https://doi.org/10.1007/s00419-013-0757-2
- Curnier, A. (2005), Mecanique Des Solides Deformables 1 : Cinematique, Dynamique, Energetique PPUB, Lausanne, Suisse.
- Daya, E.M., Azzar, L. and Potier-Ferry, M. (2004), "An amplitude equation for the non-linear vibration of viscoelastically damped sandwich beam", J. Sound Vib., 271(3-5) ,789-813. https://doi.org/10.1016/S0022-460X(03)00754-5
- Ekwaro-Osire, S., Maithripala, D.H.S. and Berg, J.M. (2001), "A series expansion approach to interpreting the spctra of the Timoshenko beam", J. Sound Vib., 204(4), 667-678.
- Ezeh, J.C., Ibearugbulem, O.M., Njoku, K.O. and Ettu, L.O. (2013), "Dynamic analysis of isotropic SSSS plate using taylor series shape function in Galerkin's functional", Int. J. Em. Tech. Adv. Eng., 3(5), 372-375.
- Han, S.M., Benaroya, H. and Wei, T. (1999), "Dynamics of transversely vibrating beams using four engineering theories", J. Sound Vib., 225(5), 935-988. https://doi.org/10.1006/jsvi.1999.2257
- Iakimov, S.K. (1971), Raschet balok na uprugom osnovanii, Leningrad.
- Jelenic, G. and Papa, E. (20011), "Exact solution for 3D Timoshenko beam problem using linked interpolation of arbitrary order", Arch. Appl. Mech., 81(2), 171-183.
- Kazakov, K.S. (2012), "Elastodynamic infinite elements based on modified Bessel shape functions, applicable in the finte element method", Struct. Eng. Mech., 42(3), 353-362. https://doi.org/10.12989/sem.2012.42.3.353
- Krylov, A.N. (1931), O raschete balok lezhashchikh na uprugom osnovanii, Akademiia nauk SSSR, Moskva, Russia,
- Misra, R.K. (2012), "Free vibration analysis of isotropic plate, using multiquadric radial basis function", Int. J. Sci. Environ. Tech., 2, 99-107.
- Ning, L., Zhongxian, L. and Lili, X. (2013), "A fiber-section bsed Timoshenko beam element using shearbending interdependent shape function", Earthq. Eng. Eng. Vib., 12, 421-432. https://doi.org/10.1007/s11803-013-0183-z
- Rakotomanana, L. (2004), A Geometric Approach To Thermomechanics Of Dissipating Continua, Progress in Mathematical Physics , Birkhauser, Boston, USA.
- Timoshenko, S.P. (1985), Vibration In Engineering, Science, Moscow, Russia.
- Triantafyllou, S. and Koumousis, V. (2011), "An inelastic Timoshenko beam element with axial-shearflexural interaction", Comput. Mech., 48(6) ,713-727. https://doi.org/10.1007/s00466-011-0616-3
- Xi, L.Y., Li, X.F. and Tang, G.J. (2013), "Free vibration of standing and handing gravity-loaded Rayleigh cantilevers", Int. J. Mech. Sci., 66,233-238. https://doi.org/10.1016/j.ijmecsci.2012.11.013
- Yufeng, X. and Liu, B. (2009), "New exact solutions for free vibrations of rectangular thin plates by sympletic dual method", Act Mech. Sin., 25, 265-270. https://doi.org/10.1007/s10409-008-0208-4