DOI QR코드

DOI QR Code

Moment Lyapunov exponents of the Parametrical Hill's equation under the excitation of two correlated wideband noises

  • Janevski, Goran (Department of Mechanical Engineering, University of Nis) ;
  • Kozic, Predrag (Department of Mechanical Engineering, University of Nis) ;
  • Pavlovic, Ivan (Department of Mechanical Engineering, University of Nis)
  • 투고 : 2013.04.03
  • 심사 : 2014.05.30
  • 발행 : 2014.11.10

초록

The Lyapunov exponent and moment Lyapunov exponents of Hill's equation with frequency and damping coefficient fluctuated by correlated wideband random processes are studied in this paper. The method of stochastic averaging, both the first-order and the second-order, is applied. The averaged $It\hat{o}$ differential equation governing the pth norm is established and the pth moment Lyapunov exponents and Lyapunov exponent are then obtained. This method is applied to the study of the almost-sure and the moment stability of the stationary solution of the thin simply supported beam subjected to time-varying axial compressions and damping which are small intensity correlated stochastic excitations. The validity of the approximate results is checked by the numerical Monte Carlo simulation method for this stochastic system.

키워드

과제정보

연구 과제 주관 기관 : Ministry of Education and Science of the Republic of Serbia

참고문헌

  1. Ariaratnam, S.T. and Tam, D.S.F. (1979), "Random vibration ad stability of a linear parametrically excited oscillator", ZAMM, 59, 79-84. https://doi.org/10.1002/zamm.19790590203
  2. Ariaratnam, S.T. and Ly, B.L. (1989), "Almost-sure stability of some linear stochastic system", ASME J. Appl. Mech., 56, 175-179. https://doi.org/10.1115/1.3176041
  3. Bai, Q.C. and Zhang, Y.H. (2012), "Almost sure asymptotic stability of a rotor systems subjected to stochastical axial loads", Mech. Mach. Theory, 58, 192-201. https://doi.org/10.1016/j.mechmachtheory.2012.08.012
  4. Falsone, G. and Settineri, D. (2011), "A method for the random analysis of linear systems subjected to nonstationary multi-correlated loads", Probab. Engin. Mech., 26(3), 447-453. https://doi.org/10.1016/j.probengmech.2010.11.011
  5. Hijawi, M., Moschuk, N. and Ibrahim, R.A. (1997a), "Unified second-order stochastic averaging approach", ASME J. Appl. Mech., 64, 281-291. https://doi.org/10.1115/1.2787305
  6. Hijawi, M., Ibrahim, R.A. and Moshchuk, N. (1997b), "Nonlinear random response of ocean structures using first-and second-order stochastic averaging", Nonlin. Dyn., 12(2), 155-197. https://doi.org/10.1023/A:1008299615084
  7. Huang, Q. and Xie, W.C. (2008), "Stability of SDOF linear viscoelastic system under the excitation of wideband noise", ASME J. Appl. Mech., 75(2), 021012-(1-9). https://doi.org/10.1115/1.2775496
  8. Kapitaniak, T. (1986), "Non-Markovian parametrical vibration", Int. J. Engng. Sci., 24(8), 1335-1337. https://doi.org/10.1016/0020-7225(86)90062-5
  9. Kozin, F. and Wu, C.M. (1973), "On the stability of linear stochastic differential equations", ASME J. Appl. Mech., 40, 87-92. https://doi.org/10.1115/1.3422979
  10. Kozic, P., Pavlovic, R. and Janevski, G. (2008), "Moment Lyapunov exponents of the stochastic parametrical Hill's equation", Int. J. Solid. Struct., 45(24), 6056-6066. https://doi.org/10.1016/j.ijsolstr.2008.07.015
  11. Khasminskii, R.Z. (1966), "A limit theorem for solution of differential equations with random right-hand side", Theor. Probab. Appl., 11(2), 390-406. https://doi.org/10.1137/1111038
  12. Ku, C.J., Tamura, Y., Yoshida, A., Miyake, K. and Chou, L.S. (2013), " Output-only modal parameter identification for force-embedded acceleration data in the presence of harmonic and white noise excitations", Wind Struct., 16(2), 157-178. https://doi.org/10.12989/was.2013.16.2.157
  13. Li, C., Xu, W., Feng, J. and Wang L. (2013), Response probability density functions of Duffing-Van der Pol vibro-impact system under correlated Gaussian white noise excitations", Physica A, 392(6), 1269-1279. https://doi.org/10.1016/j.physa.2012.11.053
  14. Ling, Q., Jin, L.X. and Huang L.Z. (2011), "Response and stability of SDOF viscoelastic system under wideband noise excitations", J. Franklin Inst., 348(8), 2026-2043. https://doi.org/10.1016/j.jfranklin.2011.05.019
  15. Liu, D., Xu, W. and Xu, Y. (2012), "Dynamic responses of axially moving viscoelastic beam under a randomly disordered periodic excitation", J. Sound Vib., 331(17), 4045-4056. https://doi.org/10.1016/j.jsv.2012.04.005
  16. Liu, W., Zhu, W. and Xu W. (2013), "Stochastic stability of quasi non-integrable Hamiltonian systems under parametric excitations of Gaussian and Poisson white noises", Prob. Engin. Mech., 32, 39-47. https://doi.org/10.1016/j.probengmech.2012.12.009
  17. Milstein, N.G. and Tret'Yakov, V.N. (1997), "Numerical methods in the weak sense for stochastic differential equations with small noise", SIAM J. Numer. Anal., 34(6), 2142-2167. https://doi.org/10.1137/S0036142996278967
  18. Pavlovic, R., Kozic, P. and Rajkovic, P. (2005), "Influence of randomly varying damping coefficient on the dynamic stability of continuous systems", Europ. J. Mech. A/Solid., 24, 81-87. https://doi.org/10.1016/j.euromechsol.2004.09.003
  19. Rozycki, B. and Zembaty, Z. (2011), "On eigenvalue problem of bar structures with stochastic spatial stiffness variations", Struct. Eng. Mech., 39(4), 541-558. https://doi.org/10.12989/sem.2011.39.4.541
  20. Zhang, J., Xu, Y., Xia, Y. and Li, J. (2011), "Generalization of the statistical moment-based damage detection method", Struct. Eng. Mech., 38(6), 715-732. https://doi.org/10.12989/sem.2011.38.6.715
  21. Lin, Y.K. and Cai, G.Q. (1995), Probabilistic Structural Dynamics, Advanced Theory and Applications, McGraw-Hill, Inc., New York.
  22. Stratonovich, R.L. (1963), Topics in the Theory of Random Noise, Vol. 1. Gordon and Breach, New York.
  23. Xu, Y., Gu, R., Zhang, H., Xu, W. and Duan J. (2011), "Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise", Phys. Rev. E, 83, 056215. https://doi.org/10.1103/PhysRevE.83.056215
  24. Xu, Y., Duan, J. and Xu, W. (2011), "An averaging principle for stochastic dynamical systems with Levy noise", Physica D, 240(17), 1395-1401. https://doi.org/10.1016/j.physd.2011.06.001
  25. Xu, Y., Wang, X., Zhang, H. and Xu, W. (2012), "Stochastic stability for nonlinear systems driven by Levy noise", Nonlin. Dyn., 68, 7-15. https://doi.org/10.1007/s11071-011-0199-8
  26. Xu, Y., Li, Y., Jia, W. and Huang, H. (2013), "Response of Duffing oscillator with fractional damping and random phase", Nonlin. Dyn., 74, 745-753. https://doi.org/10.1007/s11071-013-1002-9

피인용 문헌

  1. Higher-order stochastic averaging for a SDOF fractional viscoelastic system under bounded noise excitation vol.354, pp.17, 2017, https://doi.org/10.1016/j.jfranklin.2017.09.019
  2. Stochastic Responses for the Vibro-Impact System under the Broadband Noise vol.2019, pp.1875-9203, 2019, https://doi.org/10.1155/2019/2383576