Acknowledgement
Supported by : Ministry of Education and Science of the Republic of Serbia
References
- Ariaratnam, S.T. and Tam, D.S.F. (1979), "Random vibration ad stability of a linear parametrically excited oscillator", ZAMM, 59, 79-84. https://doi.org/10.1002/zamm.19790590203
- Ariaratnam, S.T. and Ly, B.L. (1989), "Almost-sure stability of some linear stochastic system", ASME J. Appl. Mech., 56, 175-179. https://doi.org/10.1115/1.3176041
- Bai, Q.C. and Zhang, Y.H. (2012), "Almost sure asymptotic stability of a rotor systems subjected to stochastical axial loads", Mech. Mach. Theory, 58, 192-201. https://doi.org/10.1016/j.mechmachtheory.2012.08.012
- Falsone, G. and Settineri, D. (2011), "A method for the random analysis of linear systems subjected to nonstationary multi-correlated loads", Probab. Engin. Mech., 26(3), 447-453. https://doi.org/10.1016/j.probengmech.2010.11.011
- Hijawi, M., Moschuk, N. and Ibrahim, R.A. (1997a), "Unified second-order stochastic averaging approach", ASME J. Appl. Mech., 64, 281-291. https://doi.org/10.1115/1.2787305
- Hijawi, M., Ibrahim, R.A. and Moshchuk, N. (1997b), "Nonlinear random response of ocean structures using first-and second-order stochastic averaging", Nonlin. Dyn., 12(2), 155-197. https://doi.org/10.1023/A:1008299615084
- Huang, Q. and Xie, W.C. (2008), "Stability of SDOF linear viscoelastic system under the excitation of wideband noise", ASME J. Appl. Mech., 75(2), 021012-(1-9). https://doi.org/10.1115/1.2775496
- Kapitaniak, T. (1986), "Non-Markovian parametrical vibration", Int. J. Engng. Sci., 24(8), 1335-1337. https://doi.org/10.1016/0020-7225(86)90062-5
- Kozin, F. and Wu, C.M. (1973), "On the stability of linear stochastic differential equations", ASME J. Appl. Mech., 40, 87-92. https://doi.org/10.1115/1.3422979
- Kozic, P., Pavlovic, R. and Janevski, G. (2008), "Moment Lyapunov exponents of the stochastic parametrical Hill's equation", Int. J. Solid. Struct., 45(24), 6056-6066. https://doi.org/10.1016/j.ijsolstr.2008.07.015
- Khasminskii, R.Z. (1966), "A limit theorem for solution of differential equations with random right-hand side", Theor. Probab. Appl., 11(2), 390-406. https://doi.org/10.1137/1111038
- Ku, C.J., Tamura, Y., Yoshida, A., Miyake, K. and Chou, L.S. (2013), " Output-only modal parameter identification for force-embedded acceleration data in the presence of harmonic and white noise excitations", Wind Struct., 16(2), 157-178. https://doi.org/10.12989/was.2013.16.2.157
- Li, C., Xu, W., Feng, J. and Wang L. (2013), Response probability density functions of Duffing-Van der Pol vibro-impact system under correlated Gaussian white noise excitations", Physica A, 392(6), 1269-1279. https://doi.org/10.1016/j.physa.2012.11.053
- Ling, Q., Jin, L.X. and Huang L.Z. (2011), "Response and stability of SDOF viscoelastic system under wideband noise excitations", J. Franklin Inst., 348(8), 2026-2043. https://doi.org/10.1016/j.jfranklin.2011.05.019
- Liu, D., Xu, W. and Xu, Y. (2012), "Dynamic responses of axially moving viscoelastic beam under a randomly disordered periodic excitation", J. Sound Vib., 331(17), 4045-4056. https://doi.org/10.1016/j.jsv.2012.04.005
- Liu, W., Zhu, W. and Xu W. (2013), "Stochastic stability of quasi non-integrable Hamiltonian systems under parametric excitations of Gaussian and Poisson white noises", Prob. Engin. Mech., 32, 39-47. https://doi.org/10.1016/j.probengmech.2012.12.009
- Milstein, N.G. and Tret'Yakov, V.N. (1997), "Numerical methods in the weak sense for stochastic differential equations with small noise", SIAM J. Numer. Anal., 34(6), 2142-2167. https://doi.org/10.1137/S0036142996278967
- Pavlovic, R., Kozic, P. and Rajkovic, P. (2005), "Influence of randomly varying damping coefficient on the dynamic stability of continuous systems", Europ. J. Mech. A/Solid., 24, 81-87. https://doi.org/10.1016/j.euromechsol.2004.09.003
- Rozycki, B. and Zembaty, Z. (2011), "On eigenvalue problem of bar structures with stochastic spatial stiffness variations", Struct. Eng. Mech., 39(4), 541-558. https://doi.org/10.12989/sem.2011.39.4.541
- Zhang, J., Xu, Y., Xia, Y. and Li, J. (2011), "Generalization of the statistical moment-based damage detection method", Struct. Eng. Mech., 38(6), 715-732. https://doi.org/10.12989/sem.2011.38.6.715
- Lin, Y.K. and Cai, G.Q. (1995), Probabilistic Structural Dynamics, Advanced Theory and Applications, McGraw-Hill, Inc., New York.
- Stratonovich, R.L. (1963), Topics in the Theory of Random Noise, Vol. 1. Gordon and Breach, New York.
- Xu, Y., Gu, R., Zhang, H., Xu, W. and Duan J. (2011), "Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise", Phys. Rev. E, 83, 056215. https://doi.org/10.1103/PhysRevE.83.056215
- Xu, Y., Duan, J. and Xu, W. (2011), "An averaging principle for stochastic dynamical systems with Levy noise", Physica D, 240(17), 1395-1401. https://doi.org/10.1016/j.physd.2011.06.001
- Xu, Y., Wang, X., Zhang, H. and Xu, W. (2012), "Stochastic stability for nonlinear systems driven by Levy noise", Nonlin. Dyn., 68, 7-15. https://doi.org/10.1007/s11071-011-0199-8
- Xu, Y., Li, Y., Jia, W. and Huang, H. (2013), "Response of Duffing oscillator with fractional damping and random phase", Nonlin. Dyn., 74, 745-753. https://doi.org/10.1007/s11071-013-1002-9
Cited by
- Higher-order stochastic averaging for a SDOF fractional viscoelastic system under bounded noise excitation vol.354, pp.17, 2017, https://doi.org/10.1016/j.jfranklin.2017.09.019
- Stochastic Responses for the Vibro-Impact System under the Broadband Noise vol.2019, pp.1875-9203, 2019, https://doi.org/10.1155/2019/2383576