Acknowledgement
Supported by : Iran National Science Foundation
References
- Bellagamba, L. and Yang, T.Y. (1981), "Minimum-mass truss structures with constraints on fundamental natural frequency", AIAA J., 19(11), 1452-1458. https://doi.org/10.2514/3.7875
- Erol, O.K. and Eksin, I. (2006), "New optimization method: Big Bang-Big Crunch", Adv. Eng. Softw., 37, 106-111 https://doi.org/10.1016/j.advengsoft.2005.04.005
- Fourie, P.C. and Groenwold, A.A. (2002), "The particle swarm optimization algorithm in size and shape optimization", Struct. Multidiscip. Optim., 23(4), 259-267 https://doi.org/10.1007/s00158-002-0188-0
- Gomes, M.H. (2011), "Truss optimization with dynamic constraints using a particle swarm algorithm", Expert. Syst. Appl., 38, 957-968 https://doi.org/10.1016/j.eswa.2010.07.086
- Grandhi, R.V. (1993), "Structural optimization with frequency constraints-a review", AIAA J., 31(12), 2296-2303 https://doi.org/10.2514/3.11928
- Grandhi, R.V. and Venkayya, V.B. (1988), "Structural optimization with frequency constraints", AIAA J., 26, 858-66. https://doi.org/10.2514/3.9979
- Goldberg, D.E. (1989), Genetic algorithms in search, optimization and machine learning, Reading, Addison-Wesley, MA.
- Holland, J.H. (1992), Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, 2nd Edition, MIT Press, Cambridge.
- Jansen, P.W. and Perez, R.E. (2011), "Constrained structural design optimization via a parallel augmented Lagrangian particle swarm optimization approach", Comput. Struct., 89(13-14), 1352-1356 https://doi.org/10.1016/j.compstruc.2011.03.011
- Kaveh, A. (2014), Advances in metaheuristic algorithms for optimal design of structures, Springer Verlag, GmbH, Wien-New York.
- Kaveh, A. and Khayatazad, A. (2012), "A novel meta-heuristic method: ray optimization", Comput. Struct., 112-113, 283-294 https://doi.org/10.1016/j.compstruc.2012.09.003
- Kaveh, A. and Laknejadi, A. (2011), "A novel hybrid charge system search and particle swarm optimization method for multi-objective optimization", Expert. Syst. Appl., 12(38), 15475-15488
- Kaveh, A. and Talatahari, S. (2009), "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures", Comput. Struct., 87(56), 267-283 https://doi.org/10.1016/j.compstruc.2009.01.003
- Kaveh, A. and Talatahari, S. (2010a), "A novel heuristic optimization method: charged system search", Acta Mech., 213(3-4), 267-289 https://doi.org/10.1007/s00707-009-0270-4
- Kaveh, A. and Talatahari, S. (2010b), "Optimal design of skeletal structures via the charged system search algorithm", Struct. Multidiscip. Optim., 41(6), 893-911 https://doi.org/10.1007/s00158-009-0462-5
- Kaveh, A. and Talatahari, S. (2011), "Hybrid charged system search and particle swarm optimization for engineering design problems", Eng. Comput., 4(28), 423-440
- Kaveh, A. and Zolghadr, A. (2011), "A Shape and size optimization of truss structures with frequency constraints using enhanced charged system search algorithm", Asian J. Civil Eng., 12, 487-509
- Kaveh, A. and Zolghadr, A. (2012), "Truss optimization with natural frequency constraints using a hybridized CSS-BBBC algorithm with trap recognition capability", Comput. Struct., 102-103, 14-27 https://doi.org/10.1016/j.compstruc.2012.03.016
- Kennedy, J. and Everhart, R.C. (1995), "Particle swarm optimization", Proceedings of the IEEE international conference on neural networks, 4, 1942-1948 https://doi.org/10.1109/ICNN.1995.488968
- Konzelman, C.J. (1986), "Dual methods and approximation concepts for structural optimization", M.Sc. Thesis, Department of Mechanical Engineering, University of Toronto, Canada
- Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82, 781-798 https://doi.org/10.1016/j.compstruc.2004.01.002
- Lin, J.H., Chen, W.Y. and Yu, Y.S. (1982), "Structural optimization on geometrical configuration and element sizing with static and dynamic constraints", Comput. Struct., 15, 507-515 https://doi.org/10.1016/0045-7949(82)90002-5
- Lingyun, W., Mei, Z., Guangming, W. and Guang, M. (2005), "Truss optimization on shape and sizing with frequency constraints based on genetic algorithm", J. Comput. Mech., 25, 361-368
- Luh, G.C. and Lin, C.Y. (2011), "Optimal design of truss-structures using particle swarm optimization", Comput. Struct., 89(2324), 2221-2232 https://doi.org/10.1016/j.compstruc.2011.08.013
- Mohammadzadeh, S. and Nouri, M. (2013), "An improved algorithm in railway truss bridge optimization under stress, displacement and buckling constraints imposed on moving load", Struct. Eng. Mech., 46(4), 571-594 https://doi.org/10.12989/sem.2013.46.4.571
- Perez, R.E. and Behdinan, K. (2007), "Particle swarm approach for structural design optimization", Comput. Struct., 85(19-20), 1579-1588 https://doi.org/10.1016/j.compstruc.2006.10.013
- Rozvany, G.I.N., Bendsoe, M.P. and Kirsh, U. (1995), "Layout optimization of structures", Appl. Mech. Rev., 48(2), 41-119. https://doi.org/10.1115/1.3005097
- Sedaghati, R., Suleman, A. and Tabarrok, B. (2002), "Structural optimization with frequency constraints using finite element force method", AIAA J., 40, 382-388 https://doi.org/10.2514/2.1657
- Sergeyev, O. and Mroz, Z. (2000), "Sensitivity analysis and optimal design of 3D frame structures for stress and frequency constraints", Comput. Struct. 75(2), 167-185 https://doi.org/10.1016/S0045-7949(99)00088-7
- Soh, C.K. and Yang, J. (1996), "Fuzzy controlled genetic algorithm search for shape optimization", J. Comput. Civil Eng., ASCE 10(2), 143-150 https://doi.org/10.1061/(ASCE)0887-3801(1996)10:2(143)
- Talbi, E.G. (2009), Metaheuristics: from design to implementation, John Wiley and Sons
- Tang, H., Zhang, W., Xie, L. and Xue, S. (2013), "Multi-stage approach for structural damage identification using particle swarm optimization", Smart Struct. Syst., 11(1), 69-86 https://doi.org/10.12989/sss.2013.11.1.069
- Wang, D., Zha, W.H. and Jiang, J.S. (2004), "Truss optimization on shape and sizing with frequency constraints", AIAA J. 42, 1452-1456
- Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B. and Tian, Q. (2011), "Self-adaptive learning based particle swarm optimization", Inform. Sci., 181(20), 4515-4538 https://doi.org/10.1016/j.ins.2010.07.013
- Xinchao, Z. (2010), "A perturbed particle swarm algorithm for numerical optimization", Appl. Soft. Comput., 10(1), 119-124 https://doi.org/10.1016/j.asoc.2009.06.010
- Zhao, Y., Zub, W. and Zeng, H. (2009), "A modified particle swarm optimization via particle visual modeling analysis", Comput. Math. Appl., 57, 2022-2029. https://doi.org/10.1016/j.camwa.2008.10.007
Cited by
- Cohort intelligence algorithm for discrete and mixed variable engineering problems 2018, https://doi.org/10.1080/17445760.2017.1331439
- Shape optimization for partial double-layer spherical reticulated shells of pyramidal system vol.55, pp.3, 2015, https://doi.org/10.12989/sem.2015.55.3.555
- Comparison of nine meta-heuristic algorithms for optimal design of truss structures with frequency constraints vol.76, 2014, https://doi.org/10.1016/j.advengsoft.2014.05.012
- Cyclical parthenogenesis algorithm for layout optimization of truss structures with frequency constraints vol.49, pp.8, 2017, https://doi.org/10.1080/0305215X.2016.1245730
- Optimum design of steel floor system: effect of floor division number, deck thickness and castellated beams vol.59, pp.5, 2016, https://doi.org/10.12989/sem.2016.59.5.933
- Parametric modeling and shape optimization of four typical Schwedler spherical reticulated shells vol.56, pp.5, 2015, https://doi.org/10.12989/sem.2015.56.5.813
- A Backtracking Search Algorithm for the Simultaneous Size, Shape and Topology Optimization of Trusses vol.13, pp.15, 2016, https://doi.org/10.1590/1679-78253101
- An improved differential evolution based on roulette wheel selection for shape and size optimization of truss structures with frequency constraints vol.29, pp.1, 2018, https://doi.org/10.1007/s00521-016-2426-1
- Dolphin Echolocation Optimization: Continuous search space vol.1, pp.2, 2016, https://doi.org/10.12989/acd.2016.1.2.175
- Parametric modeling and shape optimization design of five extended cylindrical reticulated shells vol.21, pp.1, 2016, https://doi.org/10.12989/scs.2016.21.1.217
- Modified symbiotic organisms search for structural optimization pp.1435-5663, 2019, https://doi.org/10.1007/s00366-018-0662-y
- Meta-heuristic methods for optimization of truss structures with vibration frequency constraints vol.229, pp.10, 2018, https://doi.org/10.1007/s00707-018-2234-z
- Minimum-weight design of high-rise structures subjected to flexural vibration at a desired natural frequency vol.27, pp.15, 2018, https://doi.org/10.1002/tal.1515
- Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm vol.63, pp.4, 2014, https://doi.org/10.12989/sem.2017.63.4.429
- Optimization of the braced dome structures by using Jaya algorithm with frequency constraints vol.30, pp.1, 2014, https://doi.org/10.12989/scs.2019.30.1.047
- Combining Migration and Differential Evolution Strategies for Optimum Design of Truss Structures with Dynamic Constraints vol.43, pp.suppl1, 2014, https://doi.org/10.1007/s40996-018-0165-5
- Optimum design of shape and size of truss structures via a new approximation method vol.76, pp.6, 2014, https://doi.org/10.12989/sem.2020.76.6.799