Acknowledgement
Supported by : NRF
References
- E. de Shalit and E. Z. Goren, On special values of theta functions of genus two, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 3, 775-799. https://doi.org/10.5802/aif.1580
- J.-I. Igusa, On the graded ring of theta-constants. II, Amer. J. Math. 88 (1966), no. 1, 221-236. https://doi.org/10.2307/2373057
- H. Y. Jung, J. K. Koo, and D. H. Shin, Ray class invariants over imaginary quadratic fields, Tohoku Math. J. 63 (2011), no. 3, 413-426. https://doi.org/10.2748/tmj/1318338949
- H. Klingen, Introductory Lectures on Siegel Modular Forms, Cambridge Studies in Advanced Mathematics, 20, Cambridge University Press, Cambridge, 1990.
- K. Komatsu, Construction of a normal basis by special values of Siegel modular functions, Proc. Amer. Math. Soc. 128 (2000), no. 2, 315-323. https://doi.org/10.1090/S0002-9939-99-05601-4
- D. Kubert and S. Lang, Modular Units, Grundlehren der mathematischen Wissenschaften 244, Spinger-Verlag, 1981.
- S. Lang, Elliptic Functions, 2nd edition, Grad. Texts in Math. 112, Spinger-Verlag, New York, 1987.
- G. Shimura, On canonical models of arithmetic quotients of bounded symmetric domains, Ann. of Math. 91 (1970), 144-222. https://doi.org/10.2307/1970604
- G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton University Press, Princeton, N. J., 1971.
- G. Shimura, Theta functions with complex multiplication, Duke Math. J. 43 (1976), no. 4, 673-696. https://doi.org/10.1215/S0012-7094-76-04353-2
- G. Shimura, On certain reciprocity-laws for theta functions and modular forms, Acta Math. 141 (1978), no. 1-2, 35-71. https://doi.org/10.1007/BF02545742
- G. Shimura, Abelian Varieties with Complex Multiplication and Modular Functions, Princeton Mathematical Series, 46., Princeton University Press, Princeton, N. J., 1998.