References
- M. Abbas, M. Ali Khan, and S. Radenovic, Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Appl. Math. Comput. 217 (2010), no. 1, 195-202. https://doi.org/10.1016/j.amc.2010.05.042
- T. Abdeljawad, E. Karapinar, and K. Tas, Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett. 24 (2011), no. 11, 1900-1904. https://doi.org/10.1016/j.aml.2011.05.014
- R. P. Agarwal, Z. Kadelburg, and S. Radenovic, On coupled fixed point results in asymmetric G-metric spaces, J. Ineq. Appl. 2013 (2013), 528; doi:10.1186/1029-242X-2013-528.
- V. Berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011), no. 15, 4889-4897. https://doi.org/10.1016/j.na.2011.03.032
- M. Berzig and B. Samet, An extension of coupled fixed point's concept in higher dimension and applications, Comput. Math. Appl. 63 (2012), no. 8, 1319-1334. https://doi.org/10.1016/j.camwa.2012.01.018
- T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), no. 7, 1379-1393. https://doi.org/10.1016/j.na.2005.10.017
- W.-S. Du, Coupled fixed point theorems for nonlinear contractions satisfied Mizoguchi- Takahashi's condition in quasiordered metric spaces, Fixed Point Theory Appl. 2010 (2010), Art. ID 876372, 9 pp.
- J. Harjani, B. Lopez, and K. Sadarangani, Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal. 74 (2011), no. 5, 1749-1760. https://doi.org/10.1016/j.na.2010.10.047
- M. Imdad, A. Sharma, and K. P. R. Rao, n-tupled coincidence and common fixed point results for weakly contractive mappings in complete metric spaces, Bull. Math. Anal. Appl. 5 (2013), no. 4, 19-39.
- Z. Kadelburg, H. K. Nashine, and S. Radenovic, Coupled fixed points in partial metric spaces, J. Adv. Math. Studies 6 (2013), no. 1, 159-172.
- E. Karapinar, Coupled fixed point theorems for nonlinear contractions in cone metric spaces, Comput. Math. Appl. 59 (2010), no. 12, 3656-3668. https://doi.org/10.1016/j.camwa.2010.03.062
- E. Karapinar, A. Roland, J. Martinez-Moreno, and C. Roland, Meir-Keeler type multidimensional fixed point theorems in partially ordered metric spaces, Abstr. Appl. Anal. 2013 (2013), Art. ID 406026, 9 pp.
- V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), no. 12, 4341-4349. https://doi.org/10.1016/j.na.2008.09.020
- N. V. Luong and N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal. 74 (2011), no. 3, 983-992. https://doi.org/10.1016/j.na.2010.09.055
- S. G. Matthews, Partial metric topology, Papers on general topology and applications (Flushing, NY, 1992), 183-197, Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, 1994.
- H. K. Nashine, Z. Kadelburg, R. P. Pathak, and S. Radenovic, Coincidence and fixed point results in ordered G-cone metric spaces, Math. Comput. Modelling 57 (2013), no. 3-4, 701-709. https://doi.org/10.1016/j.mcm.2012.07.027
- H. K. Nashine, Z. Kadelburg, and S. Radenovic, Coincidence and fixed point results under generalized weakly contractive condition in partially ordered G-metric spaces, Filomat 27 (2013), no. 7, 1333-1343. https://doi.org/10.2298/FIL1307333N
- H. K. Nashine, Z. Kadelburg, and S. Radenovic, Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces, Math. Comput. Modelling 57 (2013), no. 9-10, 2355-2365. https://doi.org/10.1016/j.mcm.2011.12.019
- M. Paknazar, M. E. Gordji, M. D. L. Sen, and S. Vaezpour, N-fixed point theorems for nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2013 (2013), no. 111, 15 pp. https://doi.org/10.1186/1687-1812-2013-15
- S. Radenovic, Remarks on some coupled fixed point results in partial metric spaces, Nonlinear Funct. Anal. Appl. 18 (2013), no. 1, 39-50.
- S. Radenovic, Remarks on some recent coupled coincidence point results in symmetric G- metric spaces, J. Operators 2013 (2013), Art. ID 290525, 8 pages.
- S. Radenovic, Remarks on some coupled coincidence point results in partially ordered metric spaces, Arab J. Math. Sci. 20 (2014), no. 1, 29-39. https://doi.org/10.1016/j.ajmsc.2013.02.003
- A. Roldan, J. Martinez-Moreno, and C. Roldan, Multidimensional fixed point theorems in partially ordered complete metric spaces, J. Math. Anal. Appl. 396 (2012), no. 2, 536-545. https://doi.org/10.1016/j.jmaa.2012.06.049
- B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal. 72 (2010), no. 12, 4508-4517. https://doi.org/10.1016/j.na.2010.02.026
- B. Samet, C. Vetro, and F. Vetro, From metric spaces to partial metric spaces, Fixed Point Theory Appl. 2013 (2013), no. 5, 11 pp. https://doi.org/10.1186/1687-1812-2013-11
- S. Sedghi, I. Altun, and N. Shobe, Coupled fixed point theorems for contractions in fuzzy metric spaces, Nonlinear Anal. 72 (2010), no. 3-4, 1298-1304. https://doi.org/10.1016/j.na.2009.08.018
- O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol. 6 (2005), no. 2, 229-240. https://doi.org/10.4995/agt.2005.1957
Cited by
- Unified multi-tupled fixed point theorems involving mixed monotone property in ordered metric spaces vol.3, pp.1, 2016, https://doi.org/10.1080/23311835.2016.1248270
- Multivariate fixed point theorems for contractions and nonexpansive mappings with applications vol.2016, pp.1, 2016, https://doi.org/10.1186/s13663-015-0493-0
- Multivariate systems of nonexpansive operator equations and iterative algorithms for solving them in uniformly convex and uniformly smooth Banach spaces with applications vol.2018, pp.1, 2018, https://doi.org/10.1186/s13660-018-1629-7
- N fixed point theorems and N best proximity point theorems for generalized contraction in partially ordered metric spaces vol.20, pp.1, 2018, https://doi.org/10.1007/s11784-018-0505-x
- System of multivariate pseudo-contractive operator equations and the existence of solutions vol.20, pp.2, 2018, https://doi.org/10.1007/s11784-018-0535-4