DOI QR코드

DOI QR Code

MULTIVARIATE COUPLED FIXED POINT THEOREMS ON ORDERED PARTIAL METRIC SPACES

  • Lee, Hosoo (College of Basic Studies Yeungnam University) ;
  • Kim, Sejong (Department of Mathematics Chungbuk National University)
  • Received : 2013.12.17
  • Published : 2014.11.01

Abstract

A partial metric, also called a nonzero self-distance, is motivated by experience from computer science. Besides a lot of properties of partial metric analogous to those of metric, fixed point theorems in partial metric spaces have been studied recently. We establish several kinds of extended fixed point theorems in ordered partial metric spaces with higher dimension under generalized notions of mixed monotone mappings.

Keywords

References

  1. M. Abbas, M. Ali Khan, and S. Radenovic, Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Appl. Math. Comput. 217 (2010), no. 1, 195-202. https://doi.org/10.1016/j.amc.2010.05.042
  2. T. Abdeljawad, E. Karapinar, and K. Tas, Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett. 24 (2011), no. 11, 1900-1904. https://doi.org/10.1016/j.aml.2011.05.014
  3. R. P. Agarwal, Z. Kadelburg, and S. Radenovic, On coupled fixed point results in asymmetric G-metric spaces, J. Ineq. Appl. 2013 (2013), 528; doi:10.1186/1029-242X-2013-528.
  4. V. Berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011), no. 15, 4889-4897. https://doi.org/10.1016/j.na.2011.03.032
  5. M. Berzig and B. Samet, An extension of coupled fixed point's concept in higher dimension and applications, Comput. Math. Appl. 63 (2012), no. 8, 1319-1334. https://doi.org/10.1016/j.camwa.2012.01.018
  6. T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), no. 7, 1379-1393. https://doi.org/10.1016/j.na.2005.10.017
  7. W.-S. Du, Coupled fixed point theorems for nonlinear contractions satisfied Mizoguchi- Takahashi's condition in quasiordered metric spaces, Fixed Point Theory Appl. 2010 (2010), Art. ID 876372, 9 pp.
  8. J. Harjani, B. Lopez, and K. Sadarangani, Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal. 74 (2011), no. 5, 1749-1760. https://doi.org/10.1016/j.na.2010.10.047
  9. M. Imdad, A. Sharma, and K. P. R. Rao, n-tupled coincidence and common fixed point results for weakly contractive mappings in complete metric spaces, Bull. Math. Anal. Appl. 5 (2013), no. 4, 19-39.
  10. Z. Kadelburg, H. K. Nashine, and S. Radenovic, Coupled fixed points in partial metric spaces, J. Adv. Math. Studies 6 (2013), no. 1, 159-172.
  11. E. Karapinar, Coupled fixed point theorems for nonlinear contractions in cone metric spaces, Comput. Math. Appl. 59 (2010), no. 12, 3656-3668. https://doi.org/10.1016/j.camwa.2010.03.062
  12. E. Karapinar, A. Roland, J. Martinez-Moreno, and C. Roland, Meir-Keeler type multidimensional fixed point theorems in partially ordered metric spaces, Abstr. Appl. Anal. 2013 (2013), Art. ID 406026, 9 pp.
  13. V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), no. 12, 4341-4349. https://doi.org/10.1016/j.na.2008.09.020
  14. N. V. Luong and N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal. 74 (2011), no. 3, 983-992. https://doi.org/10.1016/j.na.2010.09.055
  15. S. G. Matthews, Partial metric topology, Papers on general topology and applications (Flushing, NY, 1992), 183-197, Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, 1994.
  16. H. K. Nashine, Z. Kadelburg, R. P. Pathak, and S. Radenovic, Coincidence and fixed point results in ordered G-cone metric spaces, Math. Comput. Modelling 57 (2013), no. 3-4, 701-709. https://doi.org/10.1016/j.mcm.2012.07.027
  17. H. K. Nashine, Z. Kadelburg, and S. Radenovic, Coincidence and fixed point results under generalized weakly contractive condition in partially ordered G-metric spaces, Filomat 27 (2013), no. 7, 1333-1343. https://doi.org/10.2298/FIL1307333N
  18. H. K. Nashine, Z. Kadelburg, and S. Radenovic, Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces, Math. Comput. Modelling 57 (2013), no. 9-10, 2355-2365. https://doi.org/10.1016/j.mcm.2011.12.019
  19. M. Paknazar, M. E. Gordji, M. D. L. Sen, and S. Vaezpour, N-fixed point theorems for nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2013 (2013), no. 111, 15 pp. https://doi.org/10.1186/1687-1812-2013-15
  20. S. Radenovic, Remarks on some coupled fixed point results in partial metric spaces, Nonlinear Funct. Anal. Appl. 18 (2013), no. 1, 39-50.
  21. S. Radenovic, Remarks on some recent coupled coincidence point results in symmetric G- metric spaces, J. Operators 2013 (2013), Art. ID 290525, 8 pages.
  22. S. Radenovic, Remarks on some coupled coincidence point results in partially ordered metric spaces, Arab J. Math. Sci. 20 (2014), no. 1, 29-39. https://doi.org/10.1016/j.ajmsc.2013.02.003
  23. A. Roldan, J. Martinez-Moreno, and C. Roldan, Multidimensional fixed point theorems in partially ordered complete metric spaces, J. Math. Anal. Appl. 396 (2012), no. 2, 536-545. https://doi.org/10.1016/j.jmaa.2012.06.049
  24. B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal. 72 (2010), no. 12, 4508-4517. https://doi.org/10.1016/j.na.2010.02.026
  25. B. Samet, C. Vetro, and F. Vetro, From metric spaces to partial metric spaces, Fixed Point Theory Appl. 2013 (2013), no. 5, 11 pp. https://doi.org/10.1186/1687-1812-2013-11
  26. S. Sedghi, I. Altun, and N. Shobe, Coupled fixed point theorems for contractions in fuzzy metric spaces, Nonlinear Anal. 72 (2010), no. 3-4, 1298-1304. https://doi.org/10.1016/j.na.2009.08.018
  27. O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol. 6 (2005), no. 2, 229-240. https://doi.org/10.4995/agt.2005.1957

Cited by

  1. Unified multi-tupled fixed point theorems involving mixed monotone property in ordered metric spaces vol.3, pp.1, 2016, https://doi.org/10.1080/23311835.2016.1248270
  2. Multivariate fixed point theorems for contractions and nonexpansive mappings with applications vol.2016, pp.1, 2016, https://doi.org/10.1186/s13663-015-0493-0
  3. Multivariate systems of nonexpansive operator equations and iterative algorithms for solving them in uniformly convex and uniformly smooth Banach spaces with applications vol.2018, pp.1, 2018, https://doi.org/10.1186/s13660-018-1629-7
  4. N fixed point theorems and N best proximity point theorems for generalized contraction in partially ordered metric spaces vol.20, pp.1, 2018, https://doi.org/10.1007/s11784-018-0505-x
  5. System of multivariate pseudo-contractive operator equations and the existence of solutions vol.20, pp.2, 2018, https://doi.org/10.1007/s11784-018-0535-4