DOI QR코드

DOI QR Code

BIHARMONIC CURVES IN FINSLER SPACES

  • Voicu, Nicoleta (Faculty of Mathematics and Computer Science Transilvania University)
  • 투고 : 2013.07.23
  • 발행 : 2014.11.01

초록

Biharmonic curves are a generalization of geodesics, with applications in elasticity theory and computer science. The paper proposes a first study of biharmonic curves in spaces with Finslerian geometry, covering the following topics: a deduction of their equations, specific properties and existence of non-geodesic biharmonic curves for some classes of Finsler spaces. Integration of the biharmonic equation is presented for two concrete Finsler metrics.

키워드

참고문헌

  1. P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Acad. Publ., 1993.
  2. A. Balmus, Biharmonic Maps and Submanifolds, Geom. Balkan Press, 2009.
  3. D. Bao, S. S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics, Vol 200, Springer, 2000.
  4. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, 2nd edn., Progress in Mathematics, Vol. 203, Birkhauser, Boston, MA, 2010.
  5. I. Bucataru and R. Miron, Finsler-Lagrange Geometry - Applications to Dynamical Systems, Ed. Acad. Romane, Bucharest, 2007.
  6. R. Caddeo, S. Montaldo, C. Oniciuc, and P. Piu, The Euler-Lagrange method for bihar- monic curves, Mediterr. J. Math. 3 (2006), no. 3-4, 449-465. https://doi.org/10.1007/s00009-006-0090-x
  7. C. Calin and M. Crasmareanu, Slant curves and particles in three-dimensional warped products and their Lancret invariants, Bull. Aust. Math. Soc. 88 (2013), no. 1, 128-142. https://doi.org/10.1017/S0004972712000809
  8. D. Fetcu, Biharmonic Legendre curves in Sasakian space forms, J. Korean Math. Soc. 45 (2008), no. 2, 393-404. https://doi.org/10.4134/JKMS.2008.45.2.393
  9. J. M. Glass, Smooth-curve interpolation: a generalized spline-fit procedure, BIT 6 (1966), 277-293. https://doi.org/10.1007/BF01966089
  10. E. Gutkin, Curvatures, volumes and norms of derivatives for curves in Riemannian manifolds, J. Geom. Phys. 61 (2011), no. 11, 2147-2161. https://doi.org/10.1016/j.geomphys.2011.06.013
  11. B. K. P. Horn, The curve of least energy, ACM Trans. Math. Software 9 (1983), no. 4, 441-460. https://doi.org/10.1145/356056.356061
  12. J. I. Inoguchi and J. E. Lee, Biminimal curves in 2-dimensional space forms, Commun. Korean Math. Soc. 27 (2012), no. 4, 771-780. https://doi.org/10.4134/CKMS.2012.27.4.771
  13. G. Jiang, 2-harmonic maps and their first and second variational formulas, Note Mat. 28 (2009), 209-232.
  14. S. Maeta, k-harmonic maps into a Riemannian manifold with constant sectional cur- vature, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1835-1847. https://doi.org/10.1090/S0002-9939-2011-11049-9
  15. R. Miron and M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applica- tions, Kluwer Acad. Publ., 1994.
  16. X. Mo, An Introduction to Finsler Geometry, World Scientific, 2006.
  17. S. Montaldo and C. Oniciuc, A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina 47 (2006), no. 2, 1-22.
  18. J. Monterde, Surfaces with a family of nongeodesic biharmonic curves, Rend. Mat. Appl. (7) 28(2) (2008), 123-131.
  19. C. Oniciuc, Biharmonic submanifolds in space forms, Habil. Thesis, Univ. "Al. I. Cuza", Iasi, Romania, 2012.
  20. T. Yajima, K. Yamasaki, and H. Nagahama, Finsler metric and elastic constants for weak anisotropic media, Nonlinear Anal. Real World Appl. 12 (2011), no. 6, 3177-3184. https://doi.org/10.1016/j.nonrwa.2011.05.018