INTERIORS AND CLOSURES IN A SET WITH AN OPERATION

Fumie Nakaoka and Nobuyuki Oda

ABSTRACT. A set with an operation defined on a family of subsets is studied. The operation is used to generalize the topological space itself. The operation defines the operation-open subsets in the set. Relations are studied among two types of the interiors and the closures of subsets. Some properties of maximal operation-open sets are obtained. Semi-open sets and pre-open sets are defined in the sets with operations and some relations among them are proved.

1. Introduction

Let $\mathcal{P}(X)$ be the power set of a set X. Kasahara [2] defined an operation α on a family τ of sets to the power set of $\cup \tau$ (the union the sets in τ), namely a function $\alpha: \tau \to \mathcal{P}(\cup \tau)$ such that $G \subset G^{\alpha}$ for any $G \in \tau$, where $G^{\alpha} = \alpha(G)$, and studied the theory of operations on topologies τ of topological spaces (X,τ) . However, Kasahara's original definition, which requires the target of the operation to be $\mathcal{P}(\cup \tau)$, seems to be too restrictive for our purpose when we study operations for any family of subsets of a set X. In this paper we adopt the following definition: Let $\mathcal{F} \subset \mathcal{P}(X)$. An operation κ on \mathcal{F} is a function

$$\kappa: \mathcal{F} \to \mathcal{P}(X)$$

such that $U \subset U^{\kappa}$ for each $U \in \mathcal{F}$, where $U^{\kappa} = \kappa(U)$; we assume that \mathcal{F} contains at least one non-empty set in this paper (see Section 2).

The operation κ satisfies one of the properties of the Kuratowski closure axioms for the sets in \mathcal{F} (see Kelley [3], p. 43; κ satisfies the property (b) stated there; but κ does not satisfy the properties (a), (c), (d) there in general), although the operation κ is defined only for the sets in \mathcal{F} . However, we do not intend to generalize closure operation by κ . Kasahara [2] used the operation $\alpha: \tau \to \mathcal{P}(X)$ for topological spaces X to generalize some methods to sort out special kinds of open sets such as θ -open sets; we propose in this paper to use

Received March 19, 2014.

²⁰¹⁰ Mathematics Subject Classification. 54A05.

Key words and phrases. operation, interior, closure.

The second author was supported by JSPS Grant-in-Aid for Scientific Research (No. 23540115).

the operation $\kappa: \mathcal{F} \to \mathcal{P}(X)$ for sets X to generalize the topological space itself. Moreover, if we define an operation $\kappa: \mathcal{F} \to \mathcal{P}(X)$ in this form, the theory of the operations can be applied to various cases where topological structures or their weaker forms, namely 'generalized open sets', are not defined. The operation $\kappa: \mathcal{F} \to \mathcal{P}(X)$ defined above enables us to define the κ -open set as usual; a subset A of X is called a κ -open set of X if for each $x \in A$ there exists a set $U \in \mathcal{F}$ such that $x \in U \subset U^{\kappa} \subset A$ (Definition 2.2). Let \mathcal{F}_{κ} be the family of κ -open sets. It follows that $\emptyset \in \mathcal{F}_{\kappa}$; and $X \in \mathcal{F}_{\kappa}$ if and only if $\cup \mathcal{F} = X$ by Proposition 2.5. Moreover, if $A_{\lambda} \in \mathcal{F}_{\kappa}$ for any $\lambda \in \Lambda$, then $\bigcup_{\lambda \in \Lambda} A_{\lambda} \in \mathcal{F}_{\kappa}$ by Proposition 2.8. We call the triple (X, \mathcal{F}, κ) a space, which is a generalization of a topological space; if $\mathcal{F} = \tau$ for a topological space (X, τ) and $U^{\kappa} = U$ for any $U \in \mathcal{F}$, then $\mathcal{F}_{\kappa} = \mathcal{F} = \tau$. If (X, \mathcal{F}, κ) is a space, then we call X a (\mathcal{F}, κ) space or a κ -space. Generalizations of the topological space were in retrospect studied by choosing some parts of the axioms of the topological space (that is, the axioms in Chapter 1 of Kelley [3] for example); we use the operation $\kappa: \mathcal{F} \to \mathcal{P}(X)$ as a foundation of a generalization of the topological space.

In Section 3 we define and study two types of interiors and closures of subsets in κ -spaces, namely $\operatorname{Int}_{\kappa}$, \mathcal{F}_{κ} -Int, $\operatorname{Cl}_{\kappa}$ and \mathcal{F}_{κ} -Cl, and prove relations among them. Different interiors and closures are necessary because \mathcal{F}_{κ} -Int(A) is κ -open, but $\operatorname{Int}_{\kappa}(A)$ is not always κ -open for subsets A of (X, \mathcal{F}, κ) ; dually, \mathcal{F}_{κ} -Cl(A) is κ -closed, but $\operatorname{Cl}_{\kappa}(A)$ is not always κ -closed. We obtain relations between maximal κ -open sets and the \mathcal{F}_{κ} -closure (see Remarks 3.23 and 4.6). We define two kinds of 'neighborhoods' for each point x, namely κ -neighborhoods and κ -open neighborhoods. Since we do not assume $\cup \mathcal{F} = X$ in general, the points $x \in X - \cup \mathcal{F}$ have no neighborhoods. However, some standard formulas are proved as in Propositions 3.13, 3.16, 3.18 and Theorem 3.26. If we assume $\cup \mathcal{F} = X$, then any point $x \in X$ has at least one $V \in \mathcal{F}$ such that $x \in V \subset V^{\kappa}$ and at least one neighborhood of the type $x \in U \in \mathcal{F}_{\kappa}$ (see Remark 3.1).

In Section 4 we study relations among maximal κ -open sets and the \mathcal{F}_{κ} -closure.

In Section 5 we study some properties of pre- κ -open sets, pre- \mathcal{F}_{κ} -open sets, semi- κ -open sets and semi- \mathcal{F}_{κ} -open sets.

Janković [1] generalized the closures and the closed sets making use of the operation $\alpha: \tau \to \mathcal{P}(X)$ of [2] for topological spaces (X,τ) and defined $\operatorname{Cl}_{\alpha}$. Ogata [6] introduced the γ -open sets defined by any operation $\gamma: \tau \to \mathcal{P}(X)$ (which is the operation α in [2]) for any topological space (X,τ) ; he denoted the set of all γ -open sets by τ_{γ} , which is a 'generalized topology' of X by Proposition 2.3 of [6], and furthermore, he defined and studied the τ_{γ} -closures, τ_{γ} -Cl. Rehman and Ahmad [8] defined $\operatorname{Int}_{\gamma}$. Some 'open sets' in a topological space (X,τ) , such as θ -open sets and δ -open sets, are considered as γ -open sets for some operation $\gamma:\tau\to \mathcal{P}(X)$; θ -open sets are γ -open sets for $\gamma=\operatorname{Cl}$, the closure operation, and δ -open sets for $\gamma=\operatorname{IntCl}$, the interior-closure operation (cf. [1]). We also note that generalized closures and interiors were considered in "supratopological spaces" by Mashhour, Allam, Mahmoud and Khedr [4]; more

general family of sets by Maki, Chandrasekhara Rao and Nagoor Gani [5] and Popa and Noiri [7] (the m-structure). We see that \mathcal{F}_{κ} -Cl and \mathcal{F}_{κ} -Int satisfy their definition by Propositions 3.4 and 3.10; however, $\operatorname{Cl}_{\kappa}$ and $\operatorname{Int}_{\kappa}$ do not have the properties. In this paper, an operation is not a function $\gamma: \tau \to \mathcal{P}(X)$ for a topological space (X,τ) or some generalization of it such as $\gamma: m_X \to \mathcal{P}(X)$ for a m-structure in [7]; a feature of our approach is that the definition of our operation $\kappa: \mathcal{F} \to \mathcal{P}(X)$ enables us to use any families $\mathcal{F} \subset \mathcal{P}(X)$ as well as, for example, any family of regular open sets, pre-open sets, semi-open sets, α -open sets, β -open sets, δ -open sets and so on for \mathcal{F} (see Popa and Noiri [7] for definitions). Thus, the definition of the operation in this paper will extend the scope of applications of the theory of operations.

2. The space (X, \mathcal{F}, κ)

Let $\mathcal{P}(X)$ be the power set of a set X and $\mathcal{F} \subset \mathcal{P}(X)$ such that \mathcal{F} contains at least one non-empty set. An operation κ on \mathcal{F} is a function

$$\kappa: \mathcal{F} \to \mathcal{P}(X)$$

such that $U \subset U^{\kappa}$ for each $U \in \mathcal{F}$, where $U^{\kappa} = \kappa(U)$. We call the triple (X, \mathcal{F}, κ) a space. If (X, \mathcal{F}, κ) is a space, then we call X a (\mathcal{F}, κ) -space, or simply, a κ -space.

Remark 2.1. We note that Kasahara considered the operation $\alpha: \tau \to \mathcal{P}(\cup \tau)$ such that $G \subset G^{\alpha}$ for any $G \in \tau$ in [2], where $\cup \tau = \cup_{U \in \tau} U$. However, we do not assume that $\cup \mathcal{F} = X$ in the above definition and we will state explicitly when the assumption $\cup \mathcal{F} = X$ is necessary. We follow the idea of Kasahara [2] which impose the relation ' $U \subset U^{\kappa}$ for each $U \in \mathcal{F}$ ' to define the operation in this paper.

Definition 2.2. Let $\kappa : \mathcal{F} \to \mathcal{P}(X)$ be an operation. A subset A of X is called a κ -open set of X if for each $x \in A$ there exists a set $U \in \mathcal{F}$ such that $x \in U \subset U^{\kappa} \subset A$. The family of all κ -open sets is denoted by \mathcal{F}_{κ} . A subset F of X is called a κ -closed set of X if its complement X - F is a κ -open set in X.

Remark 2.3. The set U^{κ} itself is not necessarily κ -open for any $U \in \mathcal{F}$.

- (1) Let (\mathbb{R}, τ) be the real line with the usual topology τ . If we define $\mathcal{F} = \tau$ and $\kappa = \text{Cl} : \tau \to \mathcal{P}(\mathbb{R})$, then we see U^{κ} is not necessarily κ -open.
- (2) Let $X = \{a, b, c\}$ and $\mathcal{F} = \tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then (X, τ) is a connected topological space. If we define $\mathcal{F} = \tau$ and $\kappa = \text{Cl} : \tau \to \mathcal{P}(X)$, then we see $\emptyset^{\kappa} = \emptyset$, $\{a\}^{\kappa} = \{a, b\}^{\kappa} = \{a, c\}^{\kappa} = X^{\kappa} = X$. It follows that U^{κ} is κ -open for any $U \in \mathcal{F}$.

We have the following characterization of κ -open sets by the definition.

Proposition 2.4. A subset A of X is κ -open if and only if there exists an index set Λ and $U_{\lambda} \in \mathcal{F}$ for each $\lambda \in \Lambda$ such that $A = \bigcup_{\lambda \in \Lambda} U_{\lambda} = \bigcup_{\lambda \in \Lambda} U_{\lambda}^{\kappa}$. It

follows that $A \subset \cup \mathcal{F}$ for any κ -open set A, and $F \supset X - \cup \mathcal{F}$ for any κ -closed set F. Therefore, the relation $\cup \mathcal{F}_{\kappa} \subset \cup \mathcal{F}$ holds.

If $\kappa : \mathcal{F} \to \mathcal{P}(X)$ is the inclusion, namely $\kappa(U) = U$ for any $U \in \mathcal{F}$, then we define ' κ -open sets' making use of the family \mathcal{F} itself.

The following result is obtained by Definition 2.2:

Proposition 2.5. (1) $\emptyset \in \mathcal{F}_{\kappa}$.

(2) $X \in \mathcal{F}_{\kappa}$ if and only if $\cup \mathcal{F} = X$.

Example 2.6. Let $X = \{a, b, c\}$ and $\mathcal{F} = \{\{a\}, \{b\}, \{a, b\}\}$.

- (1) If we define an operation $\kappa : \mathcal{F} \to \mathcal{P}(X)$ by $\{a\}^{\kappa} = \{a, c\}, \{b\}^{\kappa} = \{b, c\}$ and $\{a, b\}^{\kappa} = X$, then we see $\mathcal{F}_{\kappa} = \{\emptyset\}$.
- (2) If we define an operation $\kappa : \mathcal{F} \to \mathcal{P}(X)$ by $\{a\}^{\kappa} = \{a, c\}, \{b\}^{\kappa} = \{b, c\}$ and $\{a, b\}^{\kappa} = \{a, b\}, \text{ then we see } \mathcal{F}_{\kappa} = \{\emptyset, \{a, b\}\}.$

Example 2.7. Let $X = \{a, b, c\}$ and $\mathcal{F} = \{\{a\}, \{b\}, \{c\}\}\}$. We define an operation $\kappa : \mathcal{F} \to \mathcal{P}(X)$ by $\{a\}^{\kappa} = \{a\}, \{b\}^{\kappa} = \{a, b\}$ and $\{c\}^{\kappa} = \{a, c\}$. Then we see $\mathcal{F}_{\kappa} = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$.

If (X, τ) is a topological space and $\mathcal{F} = \tau$ and the operation κ is $\gamma : \tau \to \mathcal{P}(X)$, then $\mathcal{F}_{\kappa} = \tau_{\gamma}$ of Ogata [6]. However, without the assumption $\mathcal{F} = \tau$ for a topological space (X, τ) , we have the following result as a direct consequence of Definition 2.2 (cf. Proposition 2.3 of [6]); the proof is obtained by a routine argument and it is omitted.

Proposition 2.8. If $A_{\lambda} \in \mathcal{F}_{\kappa}$ for any $\lambda \in \Lambda$, then $\bigcup_{\lambda \in \Lambda} A_{\lambda} \in \mathcal{F}_{\kappa}$.

The family \mathcal{F}_{κ} of κ -open sets is not closed under finite intersections in general (cf. Remark 2.10 of Ogata [6], which is also quoted in Example 3.19).

Remark 2.9. Let $\gamma: \tau \to \mathcal{P}(X)$ be any operation for a topological space (X,τ) . Janković [1] called a subset A of (X,τ) a γ -closed set if $\operatorname{Cl}_{\gamma}(A) \subset A$; this definition coincides with the κ -closed set in Definition 2.2 when $\kappa = \gamma: \tau \to \mathcal{P}(X)$ by Theorem 3.7 of Ogata [6] or its generalization Proposition 3.22. See also Definition 3.7.

3. Interiors and closures in κ -spaces

Let (X, \mathcal{F}, κ) be a space. Considering well-known concepts in general topology, we define κ -interior points, \mathcal{F}_{κ} -interior points, κ -adherent points, \mathcal{F}_{κ} -adherent points, and introduce $\operatorname{Int}_{\kappa}(A)$, \mathcal{F}_{κ} -Int(A), $\operatorname{Cl}_{\kappa}(A)$ and \mathcal{F}_{κ} -Cl(A) for any subset A of X. Some relations among them are obtained.

Let x be any point of X. A set U^{κ} such that $x \in U \in \mathcal{F}$ is called a κ -neighborhood of x. A κ -open set W such that $x \in W$ is called a κ -open neighborhood of x.

Remark 3.1. We notice that if $\cup \mathcal{F} \neq X$ and $x \in X - \cup \mathcal{F}$, then x has no κ -neighborhood or κ -open neighborhood; this never happens in general topology.

If $\cup \mathcal{F} = X$, then for each point x of X there exists at least one $U \in \mathcal{F}$ such that $x \in U \subset U^{\kappa} \subset X$; it follows then that $\emptyset, X \in \mathcal{F}_{\kappa}$ and each point $x \in X$ has at least one κ -open neighborhood X.

3.1. Some properties of $\operatorname{Int}_{\kappa}$, \mathcal{F}_{κ} -Int, $\operatorname{Cl}_{\kappa}$ and \mathcal{F}_{κ} -Cl

Definition 3.2. Let A be a subset of X and x a point of X. A point x is called a κ -interior point of A if there exists $U \in \mathcal{F}$ such that $x \in U \subset U^{\kappa} \subset A$. The κ -interior of A is defined by

$$\operatorname{Int}_{\kappa}(A) = \{x \mid x \text{ is a } \kappa\text{-interior point of } A\}.$$

A point x is called a \mathcal{F}_{κ} -interior point of A if there exists $V \in \mathcal{F}_{\kappa}$ such that $x \in V \subset A$. The \mathcal{F}_{κ} -interior of A is defined by

$$\mathcal{F}_{\kappa}$$
-Int $(A) = \{x \mid x \text{ is a } \mathcal{F}_{\kappa}$ -interior point of $A\}$.

Example 3.3. We consider the examples (1) and (2) in Example 2.6, where $X = \{a, b, c\}$: In (1) we see $\operatorname{Int}_{\kappa}(X) = \{a, b\}$ and $\mathcal{F}_{\kappa}\operatorname{-Int}(X) = \emptyset$; in (2) we see $\operatorname{Int}_{\kappa}(X) = \{a, b\} = \mathcal{F}_{\kappa}\operatorname{-Int}(X)$.

Proposition 3.4. \mathcal{F}_{κ} -Int $(A) = \bigcup \{V \mid V \subset A \text{ and } V \in \mathcal{F}_{\kappa}\}.$

Proof. We see $x \in \mathcal{F}_{\kappa}$ -Int(A) if and only if there exists $V \in \mathcal{F}_{\kappa}$ such that $x \in V \subset A$, which is equivalent to $x \in \bigcup \{V \mid V \subset A \text{ and } V \in \mathcal{F}_{\kappa}\}.$

The following are immediate consequences of the definitions.

Proposition 3.5. The following hold for any subset A of X.

- (1) $A \supset \operatorname{Int}_{\kappa}(A) \supset \mathcal{F}_{\kappa}\operatorname{-Int}(A)$.
- (2) If A is a κ -open set, then $A = \operatorname{Int}_{\kappa}(A) = \mathcal{F}_{\kappa}\operatorname{-Int}(A)$.

Corollary 3.6. Assume that (X, τ) is a topological space and $\mathcal{F} \subset \tau$. The following hold for any subset A of X.

- (1) $A \supset \operatorname{Int}(A) \supset \operatorname{Int}_{\kappa}(A) \supset \mathcal{F}_{\kappa}\operatorname{-Int}(A)$.
- (2) If A is a κ -open set, then $A = \operatorname{Int}(A) = \operatorname{Int}_{\kappa}(A) = \mathcal{F}_{\kappa}\operatorname{-Int}(A)$.

Definition 3.7. Let A be a subset of X and x a point of X. A point x is called a κ -adherent point of A if $U^{\kappa} \cap A \neq \emptyset$ for any $U \in \mathcal{F}$ with $x \in U$, or there exists no $U \in \mathcal{F}$ with $x \in U$. The κ -closure of A is defined by

$$Cl_{\kappa}(A) = \{x \mid x \text{ is a } \kappa\text{-adherent point of } A\}.$$

A point x is called a \mathcal{F}_{κ} -adherent point of A if $V \cap A \neq \emptyset$ for any $V \in \mathcal{F}_{\kappa}$ with $x \in V$, or there exists no $V \in \mathcal{F}_{\kappa}$ with $x \in V$. The \mathcal{F}_{κ} -closure of A is defined by

$$\mathcal{F}_{\kappa}$$
-Cl(A) = {x | x is a \mathcal{F}_{κ} -adherent point of A}.

Although some points of X may have no κ -neighborhood or κ -open neighborhood, the following results holds by Definition 3.7.

Proposition 3.8. The inclusions $A \subset Cl_{\kappa}(A)$ and $A \subset \mathcal{F}_{\kappa}\text{-}Cl(A)$ hold for any $A \subset X$.

Remark 3.9. The following relations hold for any subset A of X.

$$\operatorname{Int}_{\kappa}(A) \subset \cup \mathcal{F} \text{ and } \mathcal{F}_{\kappa}\operatorname{-Int}(A) \subset \cup \mathcal{F}_{\kappa};$$

$$\operatorname{Cl}_{\kappa}(A) \supset X - \cup \mathcal{F} \text{ and } \mathcal{F}_{\kappa}\text{-}\operatorname{Cl}(A) \supset X - \cup \mathcal{F}_{\kappa}.$$

The above relations hold even in the case where $A = \emptyset$ or X. It follows that

$$\operatorname{Int}_{\kappa}(X) = \cup \mathcal{F} \text{ and } \mathcal{F}_{\kappa}\operatorname{-Int}(X) = \cup \mathcal{F}_{\kappa};$$

$$\mathrm{Cl}_{\kappa}(\emptyset) = X - \cup \mathcal{F} \text{ and } \mathcal{F}_{\kappa}\text{-}\mathrm{Cl}(\emptyset) = X - \cup \mathcal{F}_{\kappa};$$

$$\operatorname{Int}_{\kappa}(\emptyset) = \emptyset = \mathcal{F}_{\kappa}\operatorname{-Int}(\emptyset) \text{ and } \operatorname{Cl}_{\kappa}(X) = X = \mathcal{F}_{\kappa}\operatorname{-Cl}(X).$$

Proposition 3.10. \mathcal{F}_{κ} -Cl(A) = $\cap \{F \mid A \subset F \text{ and } X - F \in \mathcal{F}_{\kappa}\}.$

Proof. We see $x \notin \mathcal{F}_{\kappa}\text{-Cl}(A)$ if and only if $V \cap A = \emptyset$ for some $V \in \mathcal{F}_{\kappa}$ with $x \in V$, which is equivalent to $x \notin \cap \{F \mid A \subset F \text{ and } X - F \in \mathcal{F}_{\kappa}\}$.

The following results are obtained as immediate consequences of the definitions and Proposition 3.10; they are known for special cases where operations are $\kappa = \gamma : \tau \to \mathcal{P}(X)$ for topological spaces (X, τ) by (3.4) of Ogata [6].

Proposition 3.11. The following hold for any subset A of X.

- (1) $A \subset \operatorname{Cl}_{\kappa}(A) \subset \mathcal{F}_{\kappa}\operatorname{-Cl}(A)$.
- (2) If A is a κ -closed set, then $A = \operatorname{Cl}_{\kappa}(A) = \mathcal{F}_{\kappa}\operatorname{-Cl}(A)$.

Corollary 3.12. Assume that (X,τ) is a topological space and $\mathcal{F} \subset \tau$. The following hold for any subset A of X.

- (1) $A \subset Cl(A) \subset Cl_{\kappa}(A) \subset \mathcal{F}_{\kappa}$ -Cl(A).
- (2) If A is a κ -closed set, then $A = \mathrm{Cl}(A) = \mathrm{Cl}_{\kappa}(A) = \mathcal{F}_{\kappa}$ - $\mathrm{Cl}(A)$.

Proposition 3.13. The following hold for any subset A of X:

- (1) $X (\mathcal{F}_{\kappa}\text{-Int}(A)) = \mathcal{F}_{\kappa}\text{-Cl}(X A); \quad X (\mathcal{F}_{\kappa}\text{-Cl}(A)) = \mathcal{F}_{\kappa}\text{-Int}(X A).$
- (2) $X \operatorname{Int}_{\kappa}(A) = \operatorname{Cl}_{\kappa}(X A); \quad X \operatorname{Cl}_{\kappa}(A) = \operatorname{Int}_{\kappa}(X A).$

Proof. (1) We prove the first formula. Let $x \in X - (\mathcal{F}_{\kappa}\text{-Int}(A))$.

Case 1; $x \notin \cup \mathcal{F}_{\kappa}$: $x \notin \mathcal{F}_{\kappa}$ -Int(A) is equivalent to $x \in \mathcal{F}_{\kappa}$ -Cl(X - A) by definitions.

Case 2; $x \in \cup \mathcal{F}_{\kappa}$: By the definitions of \mathcal{F}_{κ} -Int and \mathcal{F}_{κ} -Cl, the condition $x \notin \mathcal{F}_{\kappa}$ -Int(A) is equivalent to the condition that there exists no $V \in \mathcal{F}_{\kappa}$ such that $x \in V \subset A$, that is, $V \cap (X - A) \neq \emptyset$ for any $V \in \mathcal{F}_{\kappa}$ with $x \in V$ or $x \in \mathcal{F}_{\kappa}$ -Cl(X - A).

(2) We prove the first formula. Let $x \in X - \operatorname{Int}_{\kappa}(A)$.

Case 1; $x \notin \cup \mathcal{F}$: The condition $x \notin \operatorname{Int}_{\kappa}(A)$ is equivalent to the condition that $x \in \operatorname{Cl}_{\kappa}(X - A)$ by definitions.

Case 2; $x \in \cup \mathcal{F}$: The condition $x \notin \operatorname{Int}_{\kappa}(A)$ is equivalent to the condition that there exists no $U \in \mathcal{F}$ such that $x \in U \subset U^{\kappa} \subset A$, that is, $U^{\kappa} \cap (X - A) \neq \emptyset$ for any $U \in \mathcal{F}$ with $x \in U$ or $x \in \operatorname{Cl}_{\kappa}(X - A)$.

Proposition 3.14. Let A be any subset of X. Then \mathcal{F}_{κ} -Int(A) is a κ -open set and \mathcal{F}_{κ} -Cl(A) is a κ -closed set.

Proof. By Propositions 2.8 and 3.4, the set \mathcal{F}_{κ} -Int(A) is κ -open. By Proposition 3.13(1), we have \mathcal{F}_{κ} -Cl(A) = $X - (\mathcal{F}_{\kappa}$ -Int(X - A)), and hence \mathcal{F}_{κ} -Cl(A) is a κ -closed set.

Remark 3.15. (1) We proved that $\mathcal{F}_{\kappa}\text{-Int}(A)$ is a κ -open set and $\mathcal{F}_{\kappa}\text{-Cl}(A)$ is a κ -closed set by Proposition 3.14. But, $\operatorname{Int}_{\kappa}(A)$ is not necessarily a κ -open set, and $\operatorname{Cl}_{\kappa}(A)$ is not necessarily a κ -closed set even in the case where $\kappa = \gamma : \tau \to \mathcal{P}(X)$ for a topological space (X,τ) . For example: Let $X = \{a,b,c\}$ and $\mathcal{F} = \tau = \{\emptyset, \{a\}, \{b\}, \{a,b\}, X\}$. Then (X,τ) is a topological space. Let $\kappa = \gamma$ be an operation defined by $\kappa(A) = \gamma(A) = \operatorname{Cl}(A)$ for any $A \in \tau$; we see $\mathcal{F}_{\kappa} = \tau_{\gamma} = \{\emptyset, X\}$ (cf. Example 2.7 of [6]). It follows that $\operatorname{Int}_{\kappa}(\{a,c\}) = \{a\}$ is not a κ -open set and

$$\{a\} = \operatorname{Int}_{\kappa}(\{a,c\}) \neq \mathcal{F}_{\kappa}\operatorname{-Int}(\{a,c\}) = \emptyset.$$

Moreover, $Cl_{\kappa}(\{a\}) = \{a, c\}$ is not a κ -closed set and \mathcal{F}_{κ} - $Cl(\{a\}) = X$ is a κ -closed set.

(2) Ogata [6] defined the τ_{γ} -closure of a subset A of X by

$$\tau_{\gamma}\text{-Cl}(A) = \bigcap \{F \mid A \subset F \text{ and } X - F \in \tau_{\gamma}\}\$$

for any operation $\gamma: \tau \to \mathcal{P}(X)$ and any topological space (X, τ) .

3.2. Some formulas and examples

By Propositions 3.4, 3.10 and 3.14, the following results for \mathcal{F}_{κ} -Int and \mathcal{F}_{κ} -Cl are obtained (cf. Theorem 1.1 of [4], Lemmas 2.2 and 2.3 of [5] and Lemmas 3.1 and 3.2 of [7]).

Proposition 3.16. Let A and B be subsets of X.

- (1) \mathcal{F}_{κ} -Int(\mathcal{F}_{κ} -Int(A)) = \mathcal{F}_{κ} -Int(A). If $A \subset B$, then \mathcal{F}_{κ} -Int(A) $\subset \mathcal{F}_{\kappa}$ -Int(B).
- (2) \mathcal{F}_{κ} -Cl(\mathcal{F}_{κ} -Cl(A)) = \mathcal{F}_{κ} -Cl(A). If $A \subset B$, then \mathcal{F}_{κ} -Cl(A) $\subset \mathcal{F}_{\kappa}$ -Cl(B).

Corollary 3.17. For any subsets A and B of X, the following hold.

$$\mathcal{F}_{\kappa}\text{-}\operatorname{Int}(A \cap B) \subset \mathcal{F}_{\kappa}\text{-}\operatorname{Int}(A) \cap \mathcal{F}_{\kappa}\text{-}\operatorname{Int}(B);$$

$$\mathcal{F}_{\kappa}\text{-}\operatorname{Int}(A \cup B) \supset \mathcal{F}_{\kappa}\text{-}\operatorname{Int}(A) \cup \mathcal{F}_{\kappa}\text{-}\operatorname{Int}(B);$$

$$\mathcal{F}_{\kappa}\text{-}\operatorname{Cl}(A \cap B) \subset \mathcal{F}_{\kappa}\text{-}\operatorname{Cl}(A) \cap \mathcal{F}_{\kappa}\text{-}\operatorname{Cl}(B);$$

$$\mathcal{F}_{\kappa}\text{-}\operatorname{Cl}(A \cup B) \supset \mathcal{F}_{\kappa}\text{-}\operatorname{Cl}(A) \cup \mathcal{F}_{\kappa}\text{-}\operatorname{Cl}(B).$$

Proof. By Proposition 3.16, the results follow.

However, the formulas for Cl_κ and Int_κ are not obtained as special cases of these formulas. The following inclusions hold by the definitions, and the proof is omitted.

Proposition 3.18. (1) If $A \subset B \subset X$, then $\operatorname{Int}_{\kappa}(A) \subset \operatorname{Int}_{\kappa}(B)$ and $\operatorname{Cl}_{\kappa}(A) \subset \operatorname{Cl}_{\kappa}(B)$.

(2) If $A, B \subset X$, then

$$\operatorname{Int}_{\kappa}(A \cap B) \subset \operatorname{Int}_{\kappa}(A) \cap \operatorname{Int}_{\kappa}(B); \quad \operatorname{Int}_{\kappa}(A \cup B) \supset \operatorname{Int}_{\kappa}(A) \cup \operatorname{Int}_{\kappa}(B);$$
$$\operatorname{Cl}_{\kappa}(A \cap B) \subset \operatorname{Cl}_{\kappa}(A) \cap \operatorname{Cl}_{\kappa}(B); \quad \operatorname{Cl}_{\kappa}(A \cup B) \supset \operatorname{Cl}_{\kappa}(A) \cup \operatorname{Cl}_{\kappa}(B).$$

Example 3.19. Well-known formulas:

$$Cl(A \cup B) = Cl(A) \cup Cl(B); Int(A \cap B) = Int(A) \cap Int(B)$$

for subsets A, B of a topological space X do not hold in general for Cl_{γ} , Int_{γ} , τ_{γ} -Cl and τ_{γ} -Int even in the case where $\kappa = \gamma : \tau \to \mathcal{P}(X)$ for a topological space (X, τ) . For example, we consider the topological space (X, τ) and the operation γ of Example 2.8 of Ogata [6]: Let $X = \{a, b, c\}$ and

$$\mathcal{F} = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}.$$

Define an operation $\kappa : \mathcal{F} \to \mathcal{P}(X)$ by $A^{\kappa} = A$ if $b \in A$ and $A^{\kappa} = \mathrm{Cl}(A)$ if $b \notin A$. In this case, $\mathcal{F}_{\kappa} = \{\emptyset, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\{a, b\} \cap \{a, c\} = \{a\} \notin \mathcal{F}_{\kappa}$ by Remark 2.10 of [6]. We have

$$\operatorname{Cl}_{\kappa}(\{b\}) \cup \operatorname{Cl}_{\kappa}(\{c\}) = \{b\} \cup \{c\} \subsetneq X = \operatorname{Cl}_{\kappa}(\{b,c\});$$

$$\operatorname{Int}_{\kappa}(\{a\}) \cup \operatorname{Int}_{\kappa}(\{b\}) = \emptyset \cup \{b\} \subsetneq \{a,b\} = \operatorname{Int}_{\kappa}(\{a,b\});$$

$$\mathcal{F}_{\kappa}\operatorname{-Cl}(\{b\}) \cup \mathcal{F}_{\kappa}\operatorname{-Cl}(\{c\}) = \{b\} \cup \{c\} \subsetneq X = \mathcal{F}_{\kappa}\operatorname{-Cl}(\{b,c\});$$

$$\mathcal{F}_{\kappa}\operatorname{-Int}(\{a\}) \cup \mathcal{F}_{\kappa}\operatorname{-Int}(\{b\}) = \emptyset \cup \{b\} \subsetneq \{a,b\} = \mathcal{F}_{\kappa}\operatorname{-Int}(\{a,b\});$$

$$\operatorname{Int}_{\kappa}(\{a,b\} \cap \{a,c\}) = \operatorname{Int}_{\kappa}(\{a\}) = \emptyset \subsetneq \{a\} = \operatorname{Int}_{\kappa}(\{a,b\}) \cap \operatorname{Int}_{\kappa}(\{a,c\});$$

$$\mathcal{F}_{\kappa}\operatorname{-Int}(\{a,b\} \cap \{a,c\}) = \mathcal{F}_{\kappa}\operatorname{-Int}(\{a\}) = \emptyset$$

$$\subsetneq \{a\} = \mathcal{F}_{\kappa}\operatorname{-Int}(\{a,b\}) \cap \mathcal{F}_{\kappa}\operatorname{-Int}(\{a,c\}).$$

Theorem 3.20. The following hold for any subset A of X.

$$\mathcal{F}_{\kappa}\text{-}\operatorname{Int}(\mathcal{F}_{\kappa}\text{-}\operatorname{Cl}(\mathcal{F}_{\kappa}\text{-}\operatorname{Cl}(A)))) = \mathcal{F}_{\kappa}\text{-}\operatorname{Int}(\mathcal{F}_{\kappa}\text{-}\operatorname{Cl}(A));$$

$$\mathcal{F}_{\kappa}\text{-}\operatorname{Cl}(\mathcal{F}_{\kappa}\text{-}\operatorname{Int}(\mathcal{F}_{\kappa}\text{-}\operatorname{Cl}(\mathcal{F}_{\kappa}\text{-}\operatorname{Int}(A)))) = \mathcal{F}_{\kappa}\text{-}\operatorname{Cl}(\mathcal{F}_{\kappa}\text{-}\operatorname{Int}(A)).$$

Proof. By Proposition 3.16, we have the results.

Proposition 3.21. The following hold for any subset A of X.

$$\begin{aligned} \operatorname{Cl}_{\kappa}(\operatorname{Cl}_{\kappa}(\operatorname{Int}_{\kappa}(A))) &\supset \operatorname{Cl}_{\kappa}(\operatorname{Int}_{\kappa}(\operatorname{Cl}_{\kappa}(\operatorname{Int}_{\kappa}(A)))) \supset \operatorname{Cl}_{\kappa}(\operatorname{Int}_{\kappa}(\operatorname{Int}_{\kappa}(A)));\\ \operatorname{Cl}_{\kappa}(\operatorname{Int}_{\kappa}(\operatorname{Cl}_{\kappa}(A))) &\supset \operatorname{Cl}_{\kappa}(\operatorname{Int}_{\kappa}(\operatorname{Cl}_{\kappa}(\operatorname{Int}_{\kappa}(A)))) \supset \operatorname{Int}_{\kappa}(\operatorname{Cl}_{\kappa}(\operatorname{Int}_{\kappa}(A)));\\ \operatorname{Int}_{\kappa}(\operatorname{Cl}_{\kappa}(\operatorname{Cl}_{\kappa}(A))) &\supset \operatorname{Int}_{\kappa}(\operatorname{Cl}_{\kappa}(\operatorname{Int}_{\kappa}(\operatorname{Cl}_{\kappa}(A)))) \supset \operatorname{Int}_{\kappa}(\operatorname{Int}_{\kappa}(\operatorname{Cl}_{\kappa}(A)));\\ \operatorname{Cl}_{\kappa}(\operatorname{Int}_{\kappa}(\operatorname{Cl}_{\kappa}(A))) &\supset \operatorname{Int}_{\kappa}(\operatorname{Cl}_{\kappa}(\operatorname{Int}_{\kappa}(\operatorname{Cl}_{\kappa}(A)))) \supset \operatorname{Int}_{\kappa}(\operatorname{Cl}_{\kappa}(\operatorname{Int}_{\kappa}(A))). \end{aligned}$$

Proof. By Proposition 3.18, we have the results.

The following result generalizes Theorem 3.7 of Ogata [6].

Proposition 3.22. The following statements are equivalent for any subset A of X.

- (1) A is κ -open.
- (2) $A = \operatorname{Int}_{\kappa}(A)$.

- (3) $A = \mathcal{F}_{\kappa}\operatorname{-Int}(A)$.
- (4) $Cl_{\kappa}(X A) = X A$.
- (5) \mathcal{F}_{κ} -Cl(X A) = X A.
- (6) X A is κ -closed.

Proof. (1) and (2) are equivalent by the definitions of κ -open sets and κ -interior points. (1) and (3) are equivalent by the definition of \mathcal{F}_{κ} -interior points and Propositions 2.8 and 3.4. (1) and (6) are equivalent by the definition of κ -closed sets. (2) and (4) are equivalent by Proposition 3.13(2). (3) and (5) are equivalent by Proposition 3.13(1).

Remark 3.23. (1) For any subset $A \subset X$, we have

$$\operatorname{Cl}_{\kappa}(\mathcal{F}_{\kappa}\operatorname{-Cl}(A)) = \mathcal{F}_{\kappa}\operatorname{-Cl}(A)$$
 and $\operatorname{Int}_{\kappa}(\mathcal{F}_{\kappa}\operatorname{-Int}(A)) = \mathcal{F}_{\kappa}\operatorname{-Int}(A)$

by Propositions 3.14 and 3.22.

(2) Let $A \subset X$. Then there are examples such that

$$\mathrm{Cl}_{\kappa}(\mathrm{Cl}_{\kappa}(A)) \neq \mathrm{Cl}_{\kappa}(A), \ \mathcal{F}_{\kappa}\mathrm{-Cl}(\mathrm{Cl}_{\kappa}(A)) \neq \mathrm{Cl}_{\kappa}(A),$$

$$\operatorname{Int}_{\kappa}(\operatorname{Int}_{\kappa}(A)) \neq \operatorname{Int}_{\kappa}(A) \text{ or } \mathcal{F}_{\kappa}\operatorname{-Int}(\operatorname{Int}_{\kappa}(A)) \neq \operatorname{Int}_{\kappa}(A)$$

even in the case where $\kappa = \gamma : \tau \to \mathcal{P}(X)$ for a topological space (X, τ) : Let (X, τ) be the space in Remark 3.15(1). Then we have $\operatorname{Cl}_{\kappa}(\{a\}) = \{a, c\}$, $\operatorname{Cl}_{\kappa}(\{a, c\}) = X$ and \mathcal{F}_{κ} - $\operatorname{Cl}(\{a, c\}) = X$. Therefore (cf. Remark 3.9 of [6])

$$\mathrm{Cl}_{\kappa}(\mathrm{Cl}_{\kappa}(\{a\})) = X \neq \{a, c\} = \mathrm{Cl}_{\kappa}(\{a\});$$

$$\mathcal{F}_{\kappa}$$
-Cl(Cl_{\kappa}(\{a\})) = $X \neq \{a, c\} = \text{Cl}_{\kappa}(\{a\}).$

Next, we have the following relations, since $\operatorname{Int}_{\kappa}(\{a,c\}) = \{a\}$:

$$\operatorname{Int}_{\kappa}(\operatorname{Int}_{\kappa}(\{a,c\})) = \operatorname{Int}_{\kappa}(\{a\}) = \emptyset \neq \{a\} = \operatorname{Int}_{\kappa}(\{a,c\});$$

$$\mathcal{F}_{\kappa}\text{-}\mathrm{Int}(\mathrm{Int}_{\kappa}(\{a,c\})) = \mathcal{F}_{\kappa}\text{-}\mathrm{Int}(\{a\}) = \emptyset \neq \{a\} = \mathrm{Int}_{\kappa}(\{a,c\}).$$

Remark 3.24. If $\kappa = \gamma : \tau \to \mathcal{P}(X)$ for some topological space (X,τ) , then Proposition 3.13(2) is the result of Theorem 2(2.1) of Rehman and Ahmad [8]. The relations in Proposition 3.18 are also remarked in [8].

3.3. Regular operations

An operation $\kappa: \mathcal{F} \to \mathcal{P}(X)$ is said to be *regular* if for any $a \in X$ and any sets $U, V \in \mathcal{F}$ with $a \in U \cap V$, there exists a set $W \in \mathcal{F}$ such that $a \in W \subset W^{\kappa} \subset U^{\kappa} \cap V^{\kappa}$ (cf. p. 98 of Kasahara [2]). Then the following result, which is a generalization of Proposition 2.9(1) of Ogata [6], is obtained by a standard argument.

Proposition 3.25. If $\kappa : \mathcal{F} \to \mathcal{P}(X)$ is regular, then $A_1 \cap A_2 \in \mathcal{F}_{\kappa}$ for any $A_1, A_2 \in \mathcal{F}_{\kappa}$.

Theorem 3.26. Assume that the operation $\kappa : \mathcal{F} \to \mathcal{P}(X)$ is regular. Let A be a κ -open set and B any subset of X. Then the following relations hold.

- (1) $A \cap \mathcal{F}_{\kappa}\text{-Cl}(B) \subset \mathcal{F}_{\kappa}\text{-Cl}(A \cap B)$.
- (2) $A \cap \operatorname{Cl}_{\kappa}(B) \subset \operatorname{Cl}_{\kappa}(A \cap B)$.

Proof. (1) If $x \in A \cap \mathcal{F}_{\kappa}$ -Cl(B), then for any $U \in \mathcal{F}_{\kappa}$ such that $x \in U$ we see $U \cap (A \cap B) = (U \cap A) \cap B \neq \emptyset$, since $x \in U \cap A \in \mathcal{F}_{\kappa}$ by Proposition 3.25.

(2) Suppose that $x \in A \cap \operatorname{Cl}_{\kappa}(B)$ and $U \in \mathcal{F}$ is any set such that $x \in U$. Since A is a κ -open set and $x \in A$, there exists $V \in \mathcal{F}$ such that $x \in V \subset V^{\kappa} \subset A$. Since κ is regular, there exists a neighborhood $W \in \mathcal{F}$ of x such that $x \in W^{\kappa} \subset U^{\kappa} \cap V^{\kappa}$. Since $x \in \operatorname{Cl}_{\kappa}(B)$, we have

$$U^{\kappa} \cap (A \cap B) = (U^{\kappa} \cap A) \cap B \supset (U^{\kappa} \cap V^{\kappa}) \cap B \supset W^{\kappa} \cap B \neq \emptyset.$$

It follows that $x \in \operatorname{Cl}_{\kappa}(A \cap B)$.

If the operation $\kappa: \mathcal{F} \to \mathcal{P}(X)$ is regular, then the following hold (cf. Example 3.19).

Proposition 3.27. If the operation $\kappa : \mathcal{F} \to \mathcal{P}(X)$ is regular, then the following equalities hold for any subsets A and B of X.

$$Int_{\kappa}(A \cap B) = Int_{\kappa}(A) \cap Int_{\kappa}(B);$$

$$Cl_{\kappa}(A \cup B) = Cl_{\kappa}(A) \cup Cl_{\kappa}(B);$$

$$\mathcal{F}_{\kappa}\text{-Int}(A \cap B) = \mathcal{F}_{\kappa}\text{-Int}(A) \cap \mathcal{F}_{\kappa}\text{-Int}(B);$$

$$\mathcal{F}_{\kappa}\text{-Cl}(A \cup B) = \mathcal{F}_{\kappa}\text{-Cl}(A) \cup \mathcal{F}_{\kappa}\text{-Cl}(B).$$

Proof. The first formula is obtained by the definition of $\operatorname{Int}_{\kappa}$ and the definition of regularity. The second is then obtained by Proposition 3.13(2). The third and the fourth formulas are obtained by Propositions 3.25 and 3.13(1).

4. Maximal κ -open sets and the \mathcal{F}_{κ} -closure.

Let (X, \mathcal{F}, κ) be a space.

Definition 4.1. A proper non-empty κ -open set U of X is said to be a maximal κ -open set if any κ -open set which contains U is X or U.

Theorem 4.2. If U is a maximal κ -open set and x is an element of X - U, then $X - U \subset W$ for any κ -open neighborhood W of x.

Proof. If $x \notin \cup \mathcal{F}$, then there is no κ -open neighborhood of x and hence the theorem holds. Now suppose that $x \in \cup \mathcal{F}$: Since $W \not\subset U$ for any κ -open neighborhood W of x, we see $W \cup U = X$ by the definition of maximal κ -open set and Proposition 2.8, or $X - U \subset W$. (Remark. If $W \cup U = X$ for some $W, U \in \mathcal{F}_{\kappa}$, then we see $\cup \mathcal{F} = X$.)

Corollary 4.3. If U is a maximal κ -open set, then either of the following (1) and (2) holds.

- (1) For each $x \in X U$ and each κ -open neighborhood W of x, the relation $X U \subsetneq W$ holds.
 - (2) U is κ -closed.

Proof. Assume that (2) does not hold. Then we must show that (1) holds: For each $x \in X - U$ and each κ -open neighborhood W of x, we see $X - U \subset W$ by Theorem 4.2. If X - U = W, then U is a κ -closed set, which contradicts our assumption. Hence, we must have $X - U \subsetneq W$.

Theorem 4.4. If U is a maximal κ -open set, then \mathcal{F}_{κ} -Cl(U) = X or \mathcal{F}_{κ} -Cl(U) = U. If $\cup \mathcal{F} \neq X$, then \mathcal{F}_{κ} -Cl(U) = X.

Proof. Suppose \mathcal{F}_{κ} -Cl(U) $\neq U$. Then U is not κ -closed by Proposition 3.11(2). Let x be any element of X-U and W any κ -open neighborhood of x. By Corollary 4.3, we have $X-U \subsetneq W$ for any κ -open neighborhood W of x, and hence we get $W \cap U \neq \emptyset$ or $x \in \mathcal{F}_{\kappa}$ -Cl(U). If $x \in X-U$ has no κ -open neighborhood, then $x \in \mathcal{F}_{\kappa}$ -Cl(U). It follows that $X-U \subset \mathcal{F}_{\kappa}$ -Cl(U). Since

$$X = U \cup (X - U) \subset U \cup \mathcal{F}_{\kappa}\text{-}\mathrm{Cl}(U) = \mathcal{F}_{\kappa}\text{-}\mathrm{Cl}(U) \subset X$$

we have \mathcal{F}_{κ} -Cl(U) = X.

If $\cup \mathcal{F} \neq X$, then $\mathcal{F}_{\kappa}\text{-Cl}(U) \neq U$ and hence $\mathcal{F}_{\kappa}\text{-Cl}(U) = X$ by the first assertion.

Example 4.5. (1) In Example 2.7, maximal κ -open sets are $\{a,b\}$ and $\{a,c\}$. We see \mathcal{F}_{κ} -Cl($\{a,b\}$) = $X = \mathcal{F}_{\kappa}$ -Cl($\{a,c\}$).

(2) In Example 3.19, maximal κ -open sets are $\{a,b\}$ and $\{a,c\}$. We see $\mathcal{F}_{\kappa}\text{-Cl}(\{a,b\}) = X$ and $\mathcal{F}_{\kappa}\text{-Cl}(\{a,c\}) = \{a,c\}$.

Remark 4.6. The result of Theorem 4.4 does not hold for $\operatorname{Cl}_{\kappa}$ in general even in the case where $\kappa = \gamma : \tau \to \mathcal{P}(X)$ for a topological space (X, τ) . For example: Let $X = \{a, b, c, d\}$ and let

$$\mathcal{F} = \tau = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}, \{a,b,c\}, X\}.$$

Let $\kappa: \mathcal{F} \to \mathcal{P}(X)$ be an operation defined by

$$\emptyset^{\kappa} = \emptyset, \quad \{a\}^{\kappa} = \{a, d\}, \quad \{b\}^{\kappa} = \{c\}^{\kappa} = \{b, c\}^{\kappa} = \{b, c\},$$

$$\{a, b\}^{\kappa} = \{a, b, d\}, \quad \{a, c\}^{\kappa} = \{a, c, d\}, \quad \{a, b, c\}^{\kappa} = X^{\kappa} = X.$$

Then $\mathcal{F}_{\kappa} = \{\emptyset, \{b, c\}, X\}$ and $\{b, c\}$ is a maximal κ -open set. We see

$$\{b, c\} \neq \text{Cl}_{\kappa}(\{b, c\}) = \{b, c, d\} \neq X = \mathcal{F}_{\kappa}\text{-Cl}(\{b, c\}).$$

Finally, we note the following relations which are considered again in Corollary 4.8 and Example 5.3:

$$\operatorname{Cl}_{\kappa}(\{a,b,c\}) = X = \mathcal{F}_{\kappa}\operatorname{-Cl}(\{a,b,c\}); \quad \operatorname{Cl}_{\kappa}(\{b,c,d\}) = X = \mathcal{F}_{\kappa}\operatorname{-Cl}(\{b,c,d\}).$$

Theorem 4.7. Let U be a maximal κ -open set and S a non-empty subset of X - U. Then $\mathcal{F}_{\kappa}\text{-Cl}(S) = X - U$.

Proof. We have $\mathcal{F}_{\kappa}\text{-Cl}(S) \subset \mathcal{F}_{\kappa}\text{-Cl}(X-U) = X-U$ by Proposition 3.11(2), since X-U is a κ -closed set and $S \subset X-U$. Next, suppose that x is any element of X-U: If x has no κ -open neighborhood, then $x \in \mathcal{F}_{\kappa}\text{-Cl}(S)$; if W is any κ -open neighborhood of x, then $W \cap S \neq \emptyset$ by Theorem 4.2, since $\emptyset \neq S \subset X-U$. Hence $X-U \subset \mathcal{F}_{\kappa}\text{-Cl}(S)$.

Corollary 4.8. If U is a maximal κ -open set and M is a subset of X such that $U \subseteq M$, then \mathcal{F}_{κ} -Cl(M) = X.

Proof. Since $U \subsetneq M \subset X$, there exists a non-empty subset S of X-U such that $M=U \cup S$. Hence we have

$$\mathcal{F}_{\kappa}\text{-Cl}(M) = \mathcal{F}_{\kappa}\text{-Cl}(S \cup U) \supset \mathcal{F}_{\kappa}\text{-Cl}(S) \cup \mathcal{F}_{\kappa}\text{-Cl}(U) \supset (X - U) \cup U = X$$
 by Theorem 4.7 or $\mathcal{F}_{\kappa}\text{-Cl}(M) = X$.

5. The pre- κ -open sets and the semi- κ -open sets

Let (X, \mathcal{F}, κ) be a space. A subset M of a set X is called

- a pre- κ -open set if $M \subset \operatorname{Int}_{\kappa}(\operatorname{Cl}_{\kappa}(M))$;
- a pre- \mathcal{F}_{κ} -open set if $M \subset \mathcal{F}_{\kappa}$ -Int $(\mathcal{F}_{\kappa}$ -Cl(M));
- a semi- κ -open set if $M \subset \operatorname{Cl}_{\kappa}(\operatorname{Int}_{\kappa}(M))$;
- a semi- \mathcal{F}_{κ} -open set if $M \subset \mathcal{F}_{\kappa}$ -Cl $(\mathcal{F}_{\kappa}$ -Int(M)).

The complement of a pre- κ -open (resp. pre- \mathcal{F}_{κ} -open, semi- κ -open, semi- \mathcal{F}_{κ} -open) set is called a pre- κ -closed (resp. pre- \mathcal{F}_{κ} -closed, semi- κ -closed, semi- \mathcal{F}_{κ} -closed) set.

Any κ -open (resp. κ -closed) set is pre- κ -open, pre- \mathcal{F}_{κ} -open, semi- κ -open and semi- \mathcal{F}_{κ} -open (resp. pre- κ -closed, pre- \mathcal{F}_{κ} -closed, semi- κ -closed and semi- \mathcal{F}_{κ} -closed) by Proposition 3.22.

Theorem 5.1. Let U be a maximal κ -open set and M any subset of X with $U \subset M \subset \cup \mathcal{F}_{\kappa}$. Then M is pre- \mathcal{F}_{κ} -open.

Proof. If M=U, then M is a κ -open set. Therefore M is a pre- \mathcal{F}_{κ} -open set. Otherwise $U \subsetneq M$, and we have \mathcal{F}_{κ} -Int $(\mathcal{F}_{\kappa}$ -Cl $(M)) = \mathcal{F}_{\kappa}$ -Int $(X) = \cup \mathcal{F}_{\kappa} \supset M$ by Corollary 4.8 and Remark 3.9. Therefore M is a pre- \mathcal{F}_{κ} -open set. \square

Example 5.2. Let (X,τ) be a topological space and $\gamma:\tau\to\mathcal{P}(X)$ any operation. If U is a maximal γ -open set, then $X-\{a\}$ is a pre- τ_{γ} -open for any element a of X-U by Theorem 5.1.

Example 5.3. Let (X, τ) and κ be the same as in Remark 4.6. Let $M = \{a, b, c\}$ which contains a maximal κ -open set $\{b, c\}$. Then by Theorem 5.1, the subset M is pre- \mathcal{F}_{κ} -open. However, we see

$$\operatorname{Int}_{\kappa}(M) = \{b, c\} = \mathcal{F}_{\kappa}\operatorname{-Int}(M);$$

$$\mathcal{F}_{\kappa}$$
-Cl $(\mathcal{F}_{\kappa}$ -Int (M)) = $X \supset M$; Cl $_{\kappa}$ (Int $_{\kappa}(M)$) = $\{b, c, d\} \not\supset M$.

Hence M is not semi- κ -open, but M is semi- \mathcal{F}_{κ} -open. Moreover, we see

$$\operatorname{Cl}_{\kappa}(\{a, b, c\}) = X = \operatorname{Cl}_{\kappa}(\{a, c, d\}).$$

Hence $\{a, b, c\} (= M)$ and $\{a, c, d\}$ are pre- κ -open sets.

Example 5.4. A subset M which contains a maximal κ -open set is not necessarily pre- κ -open or semi- κ -open or semi- \mathcal{F}_{κ} -open: Let $X = \{a, b, c, d\}$ and $\mathcal{F} = \{\{a\}, \{b\}, \{c\}, \{d\}\}$. Define $\kappa : \mathcal{F} \to \mathcal{P}(X)$ by

$${a}^{\kappa} = {a}, {b}^{\kappa} = {b, c}, {c}^{\kappa} = {c, d}, {d}^{\kappa} = {b, d}.$$

It follows that $\mathcal{F}_{\kappa} = \{\emptyset, \{a\}, \{b, c, d\}, X\}$. We see $\{a\}$ and $\{b, c, d\}$ are maximal κ -open sets. Let $M = \{a, b\}$. Then we see $\mathrm{Cl}_{\kappa}(M) = M \cup \{d\}$ and $\mathrm{Int}_{\kappa}(M) = \{a\}$. It follows that

$$\operatorname{Int}_{\kappa}(\operatorname{Cl}_{\kappa}(M)) = \{a, d\} \not\supset M; \quad \operatorname{Cl}_{\kappa}(\operatorname{Int}_{\kappa}(M)) = \{a\} \not\supset M.$$

Hence M is not pre- κ -open or semi- κ -open. We see \mathcal{F}_{κ} -Int $(M) = \{a\}$ and

$$\mathcal{F}_{\kappa}\text{-}\mathrm{Cl}(\mathcal{F}_{\kappa}\text{-}\mathrm{Int}(M)) = \mathcal{F}_{\kappa}\text{-}\mathrm{Cl}(\{a\}) = \{a\} \not\supset M.$$

It follows that M is not a semi- \mathcal{F}_{κ} -open set. However, M is a pre- \mathcal{F}_{κ} -open set by Theorem 5.1.

Example 5.5. If $M \subset X - \cup \mathcal{F}$, then M is semi- κ -open and semi- \mathcal{F}_{κ} -open, since the relation $\operatorname{Int}_{\kappa}(M) = \emptyset = \mathcal{F}_{\kappa}\operatorname{-Int}(M)$ and the facts in Remark 3.9 and Proposition 2.4 imply the following relations:

$$\mathrm{Cl}_{\kappa}(\mathrm{Int}_{\kappa}(M))=\mathrm{Cl}_{\kappa}(\emptyset)=X-\cup\mathcal{F}\supset M;$$

$$\mathcal{F}_{\kappa}\text{-}\mathrm{Cl}(\mathcal{F}_{\kappa}\text{-}\mathrm{Int}(M))=\mathcal{F}_{\kappa}\text{-}\mathrm{Cl}(\emptyset)=X-\cup\mathcal{F}_{\kappa}\supset X-\cup\mathcal{F}\supset M.$$

By the following theorem, we have relations between pre- κ -open sets and pre- \mathcal{F}_{κ} -open sets; or semi- κ -open sets and semi- \mathcal{F}_{κ} -open sets under some conditions.

Theorem 5.6. Let M be any subset of X.

(1) If
$$\operatorname{Int}_{\kappa}(\mathcal{F}_{\kappa}\operatorname{-Cl}(M)) = \mathcal{F}_{\kappa}\operatorname{-Int}(\operatorname{Cl}_{\kappa}(M))$$
, then

$$\operatorname{Int}_{\kappa}(\operatorname{Cl}_{\kappa}(M)) = \mathcal{F}_{\kappa}\operatorname{-Int}(\mathcal{F}_{\kappa}\operatorname{-Cl}(M)).$$

(2) If
$$\operatorname{Cl}_{\kappa}(\mathcal{F}_{\kappa}\operatorname{-Int}(M)) = \mathcal{F}_{\kappa}\operatorname{-Cl}(\operatorname{Int}_{\kappa}(M))$$
, then

$$\operatorname{Cl}_{\kappa}(\operatorname{Int}_{\kappa}(M)) = \mathcal{F}_{\kappa}\operatorname{-Cl}(\mathcal{F}_{\kappa}\operatorname{-Int}(M)).$$

Proof. (1) By Propositions 3.11 and 3.5, we have

$$\operatorname{Int}_{\kappa}(\mathcal{F}_{\kappa}\operatorname{-Cl}(M)) \supset \operatorname{Int}_{\kappa}(\operatorname{Cl}_{\kappa}(M)) \supset \mathcal{F}_{\kappa}\operatorname{-Int}(\operatorname{Cl}_{\kappa}(M));$$
$$\operatorname{Int}_{\kappa}(\mathcal{F}_{\kappa}\operatorname{-Cl}(M)) \supset \mathcal{F}_{\kappa}\operatorname{-Int}(\mathcal{F}_{\kappa}\operatorname{-Cl}(M)) \supset \mathcal{F}_{\kappa}\operatorname{-Int}(\operatorname{Cl}_{\kappa}(M)).$$

Hence the result follows.

(2) By Propositions 3.11 and 3.5, we have

$$\operatorname{Cl}_{\kappa}(\mathcal{F}_{\kappa}\operatorname{-Int}(M)) \subset \operatorname{Cl}_{\kappa}(\operatorname{Int}_{\kappa}(M)) \subset \mathcal{F}_{\kappa}\operatorname{-Cl}(\operatorname{Int}_{\kappa}(M));$$

 $\operatorname{Cl}_{\kappa}(\mathcal{F}_{\kappa}\operatorname{-Int}(M)) \subset \mathcal{F}_{\kappa}\operatorname{-Cl}(\mathcal{F}_{\kappa}\operatorname{-Int}(M)) \subset \mathcal{F}_{\kappa}\operatorname{-Cl}(\operatorname{Int}_{\kappa}(M)).$

Hence the result follows.

References

- D. S. Janković, On functions with α-closed graphs, Glas. Mat. Ser. III 18(38) (1983), no. 1, 141–148.
- [2] S. Kasahara, Operation-compact spaces, Math. Japon. 24 (1979), no. 1, 97–105.
- [3] J. L. Kelley, General Topology, D. Van Nostrand Company, Inc., Toronto-New York-London, 1955.
- [4] A. S. Mashhour, A. A. Allam, F. S. Mahmoud, and F. H. Khedr, On supratopological spaces, Indian J. Pure Appl. Math. 14 (1983), no. 4, 502–510.

- [5] H. Maki, K. Chandrasekhara Rao, and A. Nagoor Gani, On generalizing semi-open sets and preopen sets, Pure Appl. Math. Sci. 49 (1999), no. 1-2, 17-29.
- [6] H. Ogata, Operations on topological spaces and associated topology, Math. Japon. 36 (1991), no. 1, 175–184.
- [7] V. Popa and T. Noiri, On the definitions of some generalized forms of continuity under minimal conditions, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 22 (2001), 9–18.
- [8] F. U. Rehman and B. Ahmad, Operations on topological spaces-I, Math. Today 10 (1992), 29–36.

Fumie Nakaoka Department of Applied Mathematics Faculty of Science Fukuoka University

8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan

 $E\text{-}mail\ address: \texttt{fumie@fukuoka-u.ac.jp}$

NOBUYUKI ODA
DEPARTMENT OF APPLIED MATHEMATICS
FACULTY OF SCIENCE
FUKUOKA UNIVERSITY
8-19-1 NANAKUMA, JONAN-KU, FUKUOKA, 814-0180, JAPAN
E-mail address: odanobu@cis.fukuoka-u.ac.jp