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NEWFORMS OF LEVEL 4 AND OF TRIVIAL CHARACTER

Yichao Zhang

Abstract. In this paper, we consider characters of SL2(Z) and then
apply them to newforms of integral weight, level 4 and of trivial character.
More precisely, we prove that all of them are actually level 1 forms of
some nontrivial character. As a byproduct, we prove that they all are
eigenfunctions of the Fricke involution with eigenvalue −1.

Introduction

The Fricke involutionWN of level N , also known as the canonical involution,
acts on the space of newforms of levelN , integral weight k, and trivial character.
Here k is necessarily even and positive. It is well-known that Hecke eigenforms
behave well under the Fricke involution. More specifically, if f is a normalized
Hecke eigenform of some level N , weight k and of trivial character, then we
have f |kWN = cg with c ∈ C× and g another normalized Hecke eigenform in
the same space (see Lemma 1.1 below or Theorem 4.6.16 in [6]). The Fourier
coefficients of g can be explicitly determined by that of f but the scalar c is
left mysterious in general.

Question 1. Can we explicitly determine c with the information on f?

Let f =
∑∞

n=1
anq

n, with q = e2πiz . If N is square-free, one can express
c in terms of ap with p | N ; for example, one can compute it explicitly using
Corollary 4.6.18 in [6] and a similar result as Lemma 2.1 in [10]. For example,

if N = p is a prime, then g = f and c = −p1−
k

2 ap ∈ {±1}. The determination
of c in the case of non-square-free N is more subtle, due the vanishing of some
Fourier coefficients ap when p2 | N . When N = 4N1 with N1 odd, Yang showed
that the eigenvalue for the W4-operator is always −1 in his unpublished note
[7]. We shall prove the same result in the simplest case, namely the case when
N = 4, using a very different approach.

On the other hand, unlike the Lie group SL2(R), SL2(Z) has non-trivial
finite dimensional representations. For example, each discriminant form of even
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signature gives a finite dimensional unitary representation of SL2(Z), the well-
known Weil representations. Weil representations are crucial in Borcherds’s
theory of singular theta lift; see [2] and also see [3], [10] and [9] for restating
Borcherds’s theory in terms of scalar-valued modular forms. In this paper, we
consider one-dimensional representations, or characters, of SL2(Z). Note that
one-dimensional Weil representation is the trivial representation. Recall that
the modular group

PSL2(Z) = SL2(Z)/{±I} = 〈S, T : S2 = (ST )3 = I〉,

where S, T denote the corresponding images in PSL2(Z) of the pair of standard
generators of SL2(Z). We can use instead the pair of generators S and ST , and
it follows that PSL2(Z), hence SL2(Z), possess some non-trivial characters χ.
From the defining relations, we can find all such characters easily. For example,
an explicit example of such a χ of (maximal) order 12 can be found in [4]. If
we restrict our attention to the modular group PSL2(Z), such χ has order at
most 6. Note in particular that these characters are not induced by Dirichlet
characters on the level, and we call them non-Dirichlet characters to allow
potential consideration of congruence subgroups. Denote by S(SL2(Z), k, χ)
the space of modular forms of weight k and type χ for SL2(Z) (see the next
section for the precise definition). A natural question then arises:

Question 2. Can the space S(SL2(Z), k, χ) be non-zero for some weight k and
some non-trivial character χ?

In this paper, we give a positive answer to this question by considering a
real non-trivial character χ.

It turns out that Questions 1 and 2 are related. They can be both answered
by an isomorphism between the space of newforms of level 4 and trivial charac-
ter and that of modular forms of level 1 and type χ (Theorem 1.2). Here χ is the
unique non-trivial real character of PSL2(Z) and it satisfies χ(S) = χ(T ) = −1.
In other words, the level 4 newforms are actually level 1 forms, that is, they
are “oldforms” when above non-Dirichlet characters are taken into account.
This is analogous to the results in [10] and [9], where by considering more gen-
eral types (Weil representations), we proved that forms in a subspace of the
space of modular forms of some level N and character

(

N
·

)

are actually level 1
(vector-valued) modular forms.

The isomorphism given in Theorem 1.2 answers Question 2 directly and the
first non-zero space appears when k = 6. It also answers Question 1; under
the isomorphism, we show in Theorem 1.3 that the eigenvalue of the Fricke
involution is given by χ(S) = −1.

In Section 1, we set up the notations and state the main results. In Sec-
tion 2, we prove some results of modular forms between different levels (or
rather, different congruence groups), and also consider possible real characters
of PSL2(Z). In the last section, we give the proof of Theorem 1.2 and Theorem
1.3 and end the paper with an example.



NEWFORMS OF LEVEL 4 AND OF TRIVIAL CHARACTER 499

Acknowledgments. The author would like to thank Yifan Yang for sending
me his unpublished note on newforms of level 4N , and Wen-Ching Winnie Li
for pointing out Yang’s result to me. The author is also grateful to Henry H.
Kim and Kyu-Hwan Lee for their support. Thanks also go to the reviewer,
who has made very useful comments on the proofs.

1. Statements of main theorems

In this section, we fix the notations and state the main results. For un-
explained notations and terminology, we refer the readers to any standard
textbook on modular forms, for example [6].

For a positive integer N , we have congruence subgroups Γ0(N) and Γ(N)
defined as follows:

Γ0(N) =

{(

a b
c d

)

∈ SL2(Z) :

(

a b
c d

)

≡

(

∗ ∗
0 ∗

)

mod N

}

,

Γ(N) =

{(

a b
c d

)

∈ SL2(Z) :

(

a b
c d

)

≡

(

1 0
0 1

)

mod N

}

,

where ∗ means no restriction on the corresponding entry. We shall be only
interested in the case when N = 2 or 4.

Let k be an even positive integer and H the upper half plane. Recall that for
a real matrix M of positive determinant and a function f on H, the weight-k
slash operator of M is defined by

(f |kM)(τ) = det(M)
k

2 (cτ + d)−kf(Mτ), M =

(

a b
c d

)

,

where Mτ = aτ+b
cτ+d . Let Γ be any congruence subgroup of SL2(Z) and χ be any

character (homomorphisms into C× of finite order) of Γ. Denote by S(Γ, k, χ)
the space of cusp forms for Γ of weight k and of character χ, namely holo-
morphic functions f on H such that f |kM = χ(M)f for all M ∈ Γ and f
vanishes at cusps. If Γ = Γ0(N) and χ is a Dirichlet character modulo N , we
denote Snew(Γ0(N), k, χ) the subspace of newforms for Γ0(N) of weight k and
of character χ. Recall that the Fricke involution, defined by the weight k slash
operator of

WN =

(

0 −1
N 0

)

,

acts on the space Snew(Γ0(N), k, 1). We have also the Hecke operators Tp, for
p ∤ N a rational prime, and Up for p | N , and we write down the action of Up

explicitly as follows

f |kUp = p
k

2
−1

∑

j mod p

f

∣

∣

∣

∣

k

(

1 j
0 p

)

.
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Note that there are different normalizations in the literature on the Hecke
operators. For ease of notations, we denote

I =

(

1 0
0 1

)

, S =

(

0 −1
1 0

)

, T =

(

1 1
0 1

)

, T1/2 =

(

1 1

2

0 1

)

, VN =

(

N 0
0 1

)

.

Assume that f has Fourier expansion
∑

n anq
n at ∞; here q = e2πiτ . Recall

that a non-zero f is called a Hecke eigenform or a primitive form if f is a
common eigenfunction for all the Hecke operators Tp. If so, a1 6= 0 and f is
called normalized if a1 = 1. We recall the following well-known result:

Lemma 1.1. Let f be a normalized Hecke eigenform in Snew(Γ0(N), k, 1) and
let f =

∑

n anq
n be its Fourier expansion at ∞. Then

(1) f |kTp = apf for each p ∤ N .

(2) f is an eigenfunction for Up and f |kUp = apf for each p | N .

(3) f |kWN = cg, where c ∈ C×, g =
∑

n bnq
n is a normalized Hecke eigen-

form such that bp = ap if p ∤ N and bp = ap if p | N .

This lemma is part of the theory of newforms, also known as Atkin-Lehner-
Li theory ([1] and [5]). Statements (1) and (2) are standard, and one may see
Chapter 4 of [6]. To work out a proof of (3), keeping in mind that χ = 1, we
first apply Lemma 1.1 of [10], which slightly generalizes Theorem 4.6.16(3) of
[6], to write the canonical involution WN as a product of local operators. We
then apply Theorem 4.6.16(4) of [6] to conclude the proof.

Let χ be the non-trivial real character on PSL2(Z) such that χ(S) = χ(T ) =
−1. Actually this is the unique one (see Lemma 2.1 below).

Now we state our main theorems.

Theorem 1.2. The map

S(SL2(Z), k, χ) → Snew(Γ0(4), k, 1)

f(τ) 7→ g(τ) = f(2τ)

defines an isomorphism.

As a byproduct, we obtain:

Theorem 1.3. For any g ∈ Snew(Γ0(4), k, 1), we have g|kW4 = −g.

For any g =
∑

n anq
n ∈ Snew(Γ0(4), k, 1), we have its L-function

L(s, g) =
∑

n

ann
−s,

and its completed L-function Λ(s, g) = π−sΓ(s)L(s, g). It is well-known that
Λ(s, g) can be analytically continued to the whole s-plane and satisfies the
following functional equation

Λ(s, g) = ikΛ(k − s, g|kW4).

With Theorem 1.3, this functional equation can be made more precise:
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Corollary 1.4. For any g ∈ Snew(Γ0(4), k, 1), we have Λ(s, g) = −ikΛ(k −
s, g).

2. Modular forms between different levels

As before, we denote also by S, T their images in PSL2(Z) respectively. It
is well-known that PSL2(Z) is generated by S, T ; more precisely,

PSL2(Z) = 〈S, T : S2 = (ST )3 = I〉.

We consider characters χ of PSL2(Z); that is, homomorphisms χ : PSL2(Z)→
C× with finite images. In case of real characters, we have the following ele-
mentary lemma.

Lemma 2.1. Let χ be a character of PSL2(Z). Then χ is a real character if

and only if χ(T ) is real, in which case either χ is trivial or χ is the unique

character such that χ(S) = χ(T ) = −1.

Proof. It is clear that χ(S) ∈ {±1} and χ(T ) is a sixth root of unity since
S2 = (ST )3 = I, and the first statement follows.

If χ is real, then χ(S), χ(T ) ∈ {±1}. Because of the defining relation
(ST )3 = I, we must have χ(S) = χ(T ). Now that S2 = (ST )3 = I are
the only definition relations, the conditions χ(S) = χ(T ) = −1 indeed give a
character. �

Proposition 2.2. Let χ be a real character of PSL2(Z). We have f ∈S(SL2(Z),
k, χ) if and only if f ∈ S(Γ(2), k, 1) and f |kS = χ(S)f , f |kT = χ(T )f .

Proof. We first recall the well-known fact that Γ0(4), considered in PSL2(Z),
is generated by T 2 and ST 4S (for a proof, see page 26 in [8]). Since Γ(2) and
Γ0(4) are conjugate via V2, we see that Γ(2) is generated by T 2 and ST 2S. So
clearly χ(Γ(2)) = {1}, and the proposition follows. �

Corollary 2.3. Let χ be a real character of PSL2(Z). We have f ∈ S(SL2(Z),
k, χ) if and only if g(τ) = f(2τ) ∈ S(Γ0(4), k, 1) and g|kW4 = χ(S)g, g|kT1/2 =
χ(T )g.

Proof. Since Γ(2) and Γ0(4) are conjugate, f(τ) 7→ f(2τ) defines an isomor-
phism between the spaces of cusp forms on Γ(2) and on Γ0(4). Under such
conjugation, when considered as operators, S corresponds to W4 and T corre-
sponds to T1/2, so the corollary follows from the previous proposition. �

3. Proof of Theorems 1.2 and 1.3

We begin with the following lemma.

Lemma 3.1. If g ∈ Snew(Γ0(4), k, 1), then g|kU2 = 0. Consequently, g|kT1/2 =
−g, and if g is a Hecke eigenform, then g|kW4 = cg for c ∈ {±1}.
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Proof. Since Snew(Γ0(4), k, 1) contains a basis of Hecke eigenforms (see Theo-
rem 4.6.13 of [6]), we may assume that g is a Hecke eigenform. We then have
g|kU2 = a2g, and we only need to prove that a2 = 0, which in turn follows
from Theorem 4.6.17 in [6].

Note that g|kU2 = 0 implies that only odd powers in q can appear in the
Fourier expansion of g at ∞, and we must have g(τ + 1

2
) = −g(τ). The last

statement follows from Theorem 4.6.16 in [6], since a2 = 0 and hence real. �

Proof of Theorem 1.3. By Lemma 2.1 and Lemma 3.1, the involution W4 on
Snew(Γ0(4), k, 1) is diagonalizable with eigenvalues being either +1 or −1.
Therefore we may decompose the space into the direct sum of the plus space
and the minus space according to the sign of the eigenvalues.

Suppose the plus space is not zero, and let g be one of the non-zero forms
therein, that is, g|kW4 = g. Now consider f(τ) = g( τ

2
), and we know that

f ∈ S(Γ(2), k, 1). From the transformation behavior of g (see Lemma 3.1) and
the isomorphism between Γ0(4) and Γ(2), we see that

f |kS = f, and f |kT = −f.

Since S, T generate PSL2(Z), the one-dimensional subspace Cf is invariant
under the action of PSL2(Z). Hence we have a character χ of PSL2(Z) such
that f |kM = χ(M)f for any M ∈ PSL2(Z). Since χ(S), χ(T ) ∈ {±1}, χ is
a real character. But that χ(S) = 1 and χ(T ) = −1 contradicts Lemma 2.1.
This completes the proof of Theorem 1.3. �

From now on, let χ be the unique character of PSL2(Z) such that χ(S) =
χ(T ) = −1. With little more effort, we may give a proof of Theorem 1.2.

Proof of Theorem 1.2. If g ∈ Snew(Γ0(4), k, 1), then by Theorem 1.3 and Lem-
ma 3.1,

g|kW4 = −g, g|kT1/2 = −g.

Hence by Corollary 2.3, we see that f(τ) = g( τ
2
) ∈ S(SL2(Z), k, χ).

Conversely, if f ∈ S(SL2(Z), k, χ), then by Corollary 2.3, g(τ) = f(2τ) ∈
S(Γ0(4), k, 1) and it satisfies

g|kW4 = −g, g|kT1/2 = −g.

We need to prove that g lies in the space of newforms. Assume that g = g0+g1
with g0 a newform and g1 an oldform, so we only have to prove that g1 = 0. By
Corollary 2.3, g0 also satisfies above transformation rule under W4 and T1/2,
so does g1, namely

g1|kW4 = −g1, g1|kT1/2 = −g1.

By Lemma 4.6.9 of [6],

g1(τ) =
∑

m=1,2

∑

l| 4

m

hm,l(lτ), hm,l ∈ Snew(Γ0(m), k, 1).
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But the transformation rule under T1/2 says that the q-expansion of g1 contains
only odd powers of q, which forces

g1(τ) =
∑

m=1,2

hm,1(τ), hm,1 ∈ Snew(Γ0(m), k, 1).

In particular, g1 ∈ S(Γ0(2), k, 1). But ST 2S ∈ Γ0(2), so g1|kST
2 = g1|kS.

Now g1|kW4 = −g1 implies that g1|kS = −g1|kV
−1
4 , and therefore

g1|kV
−1
4 T 2V4 = −g1|kST

2V4 = −g1|kSV4 = −g1|kW4 = g1.

But V −1
4 T 2V4 = T1/2, so

g1 = g1|kV
−1
4 T 2V4 = g1|kT1/2 = −g1,

and g1 = 0.
Since the maps are clearly inverse to each other, Theorem 1.2 follows. �

We end this note with the following example.

Example 3.2. We set k = 6 and we know that the space Snew(Γ0(4), 6, 1) is
one-dimensional and generated by the Hecke eigenform

g = q − 12q3 + 54q5 − 88q7 − 99q9 + 540q11 − 418q13 +O(q15).

Therefore, by Theorem 1.2, we see that the S(SL2(Z), 6, χ) is one-dimensional
and generated by

f = q1/2 − 12q3/2 + 54q5/2 − 88q7/2 − 99q9/2 + 540q11/2 − 418q13/2 +O(q15/2).
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