DOI QR코드

DOI QR Code

Effect of Basal-plane Stacking Faults on X-ray Diffraction of Non-polar (1120) a-plane GaN Films Grown on (1102) r-plane Sapphire Substrates

  • Kim, Ji Hoon (School of Electrical Engineering, Korea Univ.) ;
  • Hwang, Sung-Min (Compound Semiconductor Devices Research Center, Korea Electronic Technology Institute) ;
  • Baik, Kwang Hyeon (Dept. of Materials Science and Engineering, Hongik Univ.) ;
  • Park, Jung Ho (School of Electrical Engineering, Korea Univ.)
  • 투고 : 2014.05.11
  • 심사 : 2014.08.23
  • 발행 : 2014.10.30

초록

We report the effect of basal-plane stacking faults (BSFs) on X-ray diffraction (XRD) of non-polar (11$\underline{2}$0) a-plane GaN films with different $SiN_x$ interlayers. Complete $SiN_x$ coverage and increased three-dimensional (3D) to two-dimensional (2D) transition stages substantially reduce BSF density. It was revealed that the Si-doping profile in the Si-doped GaN layer was unaffected by the introduction of a $SiN_x$ interlayer. The smallest in-plane anisotropy of the (11$\underline{2}$0) XRD ${\omega}$-scan widths was found in the sample with multiple $SiN_x$ layers, and this finding can be attributed to the relatively isotropic GaN mosaic resulting from the increase in the 3D-2D growth step. Williamson-Hall (WH) analysis of the (h0$\underline{h}$0) series of diffractions was employed to determine the c-axis lateral coherence length (LCL) and to estimate the mosaic tilt. The c-axis LCLs obtained from WH analyses of the present study's representative a-plane GaN samples were well correlated with the BSF-related results from both the off-axis XRD ${\omega}$-scan and transmission electron microscopy (TEM). Based on WH and TEM analyses, the trends in BSF densities were very similar, even though the BSF densities extracted from LCLs indicated that the values were reduced by a factor of about twenty.

키워드

참고문헌

  1. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Weigmann, T. H. Wood, and C. A. Burrus, "Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect," Phys. Rev. Lett., Vol.53, pp.2173-2716, Nov., 1984. https://doi.org/10.1103/PhysRevLett.53.2173
  2. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, "Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells," Jpn. J. Appl. Phys., Vol.36, No.4A., pp.L382-385, Apr., 1997. https://doi.org/10.1143/JJAP.36.L382
  3. A. Chakraborty, S. Keller, C. Meier, B. A. Haskell, S. Keller, P. Waltereit, S. P. DenBaars, S. Nakamura, J. S. Speck, and U. K. Mishra, "Properties of nonpolar a-plane InGaNGaN multiple quantum wells grown on lateral epitaxially overgrown a-plane GaN," Appl. Phys. Lett., Vol.86, No.3, pp.031901-1-3, Jan., 2005. https://doi.org/10.1063/1.1851007
  4. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, "Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes," Nature, Vol.406, pp.865-868, Aug., 2000. https://doi.org/10.1038/35022529
  5. M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, "Structural characterization of nonpolar (11-20) a-plane GaN thin films grown on (1-102) r-plane sapphire," Appl. Phys. Lett., Vol.81, No.3, pp.469-471, Jul., 2002. https://doi.org/10.1063/1.1493220
  6. M. A. Moram, C. F. Johnston, J. L. Hollander, M. J. Kappers, and C. J. Humphreys, "Understanding x-ray diffraction of nonpolar gallium nitride films," J. Appl. Phys., Vol.105, No.11, 113501-1-7 (2009). https://doi.org/10.1063/1.3129307
  7. J. Abell and T. D. Moustakas, "The role of dislocations as nonradiative recombination centers in InGaN quantum wells," Appl. Phys. Lett., Vol.92, No.9, pp.091901-1-3, Mar., 2008. https://doi.org/10.1063/1.2889444
  8. H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, "The role of dislocation scattering in n-type GaN films," Appl. Phys. Lett., Vol.73, No.6, pp.821-3, Aug., 1998. https://doi.org/10.1063/1.122012
  9. N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, "Scattering of electrons at threading dislocations in GaN," J. Appl. Phys., Vol.83, No.7, pp.3656-3659, Apr., 1997.
  10. C. Stampfl and C. G. Van de Walle, "Energetics and electronic structure of stacking faults in AlN, GaN, and InN," Phys. Rev. B, Vol.57, No.24, pp.R15052-15055, Jun., 1998. https://doi.org/10.1103/PhysRevB.57.R15052
  11. M. McLaurin, A. Hirai, E. Young, F. Wu, and J. S. Speck, "Basal Plane Stacking-Fault Related Anisotropyin X-ray Rocking Curve Widths of m-Plane GaN," Jpn. J. Appl. Phys., Vol.47, No.7, pp.5429-5431, Jul., 2008. https://doi.org/10.1143/JJAP.47.5429
  12. Y. T. Rebane, Y. G. Shreter, and M. Albrecht, "Stacking Faults as Quantum Wells for Excitons in Wurtzite GaN," Phys. Status Solidi a, Vol.164, No.1, pp.141-144, Nov., 1997. https://doi.org/10.1002/1521-396X(199711)164:1<141::AID-PSSA141>3.0.CO;2-G
  13. P. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S. Figge, and D. Hommel, "Emission properties of a-plane GaN grown by metal-organic chemicalvapor deposition," J. Appl. Phys., Vol.98, No.9, pp.093519-1-7, Nov., 2005. https://doi.org/10.1063/1.2128496
  14. P. Corfdir, P. Lefebvre, L. Balet, S. Sonderegger, A. Dussaigne, T. Zhu, D. Martin, J.-D. Ganiere, N. Grandjean, and B. Deveaud-Pledran, "Exciton recombination dynamics in a-plane (Al,Ga)N/GaN quantum wells probed by picosecond photo and cathodoluminescence," J. Appl. Phys., Vol.107, No.4, pp.043524-1-5, Feb., 2010. https://doi.org/10.1063/1.3305336
  15. M. McLaurin and J. S. Speck, "p-type conductionin stacking-fault-free m-plane GaN," 2007 Phys. Status Solidi RRL, Vol.1, No.3, pp.110-112, Mar., 2007. https://doi.org/10.1002/pssr.200701041
  16. K. H. Baik, Y. G. Seo, S.-K. Hong, S. Lee, J. Kim, J.-S. Son, and S.-M. Hwang, "Effects of Basal Stacking Faults on Electrical Anisotropy of Nonpolar a-Plane (11-20) GaN Light-Emitting Diodes on Sapphire Substrate," IEEE Photonics Technol. Lett., Vol.22, No.9, pp.595-597, May., 2010. https://doi.org/10.1109/LPT.2010.2042950
  17. J. H. Kim, S.-M. Hwang, Y. G. Seo, K. H. Baik, and J. H. Park, "Structural and electrical anisotropies of Si-doped a-plane (11-20) GaN films with different SiNx interlayers," Semicond. Sci. Technol., Vol.28, No.8, pp.085007-1-8, Aug., 2013. https://doi.org/10.1088/0268-1242/28/8/085007
  18. J. L. Hollander, M. J. Kappers, C. McAleese, and C. J. Humphreys, "Improvements in a-plane GaN crystal quality by a two-step growth process," Appl. Phys. Lett., Vol.92, No.10. pp.-1-3, Mar., 2008.
  19. F. Yun, Y.-T. Moon, Y. Fu, K. Zhu, U. Ozgur, H. Morkoc, C. K. Inoki, T. S. Kuan, A. Sagar, and R. M. Feenstra, "Efficacy of single and double SiNx interlayers on defect reduction in GaN overlayers grown by organometallic vapor-phase epitaxy," J. Appl. Phys., Vol.98, No.12, pp.123502-1-8, Dec., 2005. https://doi.org/10.1063/1.2142074
  20. C. F. Johnston, M. J. Kappers, and C. J. Humphreys, "Microstructural evolution of nonpolar (11-20) GaN grown on (1-102) sapphire using a 3D-2D method," J. Appl. Phys., Vol.105, No.7, pp.073102-1-5, Apr., 2009. https://doi.org/10.1063/1.3103305
  21. D. N. Zakharov, Z. L. Weber, B. Wagner, Z. J. Reitmeier, E. A. Preble, and R. F. Davis, "Structural TEM study of nonpolar a-plane gallium nitride grown on (11-20) 4H-SiC by organometallic vapor phase epitaxy," Phys. Rev. B, Vol.71, No.23, pp.235334-1-9, Jun., 2005. https://doi.org/10.1103/PhysRevB.71.235334
  22. H. Wang, C. Chen, Z. Gong, J. Zhang, M. Gaevski, M. Su, J. Yang, and M. A. Khan, "Anisotropic structural characteristics of (110) GaN templates and coalesced epitaxial lateral overgrown films deposited on (102) sapphire," Appl. Phys. Lett. Vol.84, No.4, pp.499-501, Jan., 2004. https://doi.org/10.1063/1.1644054
  23. T. Metzger, R. Hopler, E. Born, O. Ambacher, M. Stutzmann, R. Stommer, M. Schuster, H. Gobel, S. Christiansen, M. Albrecht, and H. P. Strunk, "Defect structure of epitaxial GaNfilms determined by transmissionelectron microscopy and triple-axis X-ray diffractometry," Philos. Mag. A, Vol.77, No.4, pp.1013-1025, Aug., 1998. https://doi.org/10.1080/01418619808221225
  24. B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, "Role of threading dislocation structure on the xray diffraction peak widths in epitaxial GaN films," Appl. Phys. Lett., Vol.68, No.5, pp.643-645, Jan., 1996. https://doi.org/10.1063/1.116495
  25. R. Chierchia, T. Bottcher, H. Heinke, S. Einfeldt, S. Figge, and D. Hommel, "Microstructure of heteroepitaxial GaN revealed by x-ray diffraction," J. Appl. Phys., Vol.93, No.11, pp.8918-8925, Jun., 2003. https://doi.org/10.1063/1.1571217
  26. R. N. Kyutt, M. P. Shcheglov, V. V. Ratnikov, and A. E. Kalmykov, "X-ray diffraction study of strain and defect structure of nonpolar a-plane GaN layers grown on r-plane sapphire," Phys. Status Solidi a, Vol.206, No. 8, pp.1757-1760, Jun., 2009. https://doi.org/10.1002/pssa.200881611
  27. C. Roder, S. Einfeldt, S. Figge, T. Paskova, D. Hommel, P. P. Paskov, B. Monemar, U. Behn, B. A. Haskell, P. T. Fini, and S. Nakamura, "Stress and wafer bending of-plane GaN layers on-plane sapphire substrates," J. Appl. Phys., Vol.100, No.10, pp.103511-1-11, Nov., 2005.
  28. Q. Sun, T.-S. Ko, C. D. Yerino, Y. Zhang, I.-H. Lee, J. Han, T.-C. Lu, H.-C. Kuo, and S.-C. Wang, "Effect of Controlled Growth Dynamics on the Microstructure of Nonpolar a-Plane GaN Revealed by X-ray Diffraction," Jpn. J. Appl. Phys., Vol.48, No. pp.071002-1-4, Jul., 2009. https://doi.org/10.1143/JJAP.48.071002

피인용 문헌

  1. Rotation of in-plane structural anisotropy at the interface of an a-plane InN/GaN heterostructure grown by MOCVD on r-plane sapphire vol.18, pp.11, 2016, https://doi.org/10.1039/C5CE02595H
  2. N layers with caps and voids vol.122, pp.9, 2017, https://doi.org/10.1063/1.5001126
  3. -plane GaN crystalline quality vol.254, pp.8, 2017, https://doi.org/10.1002/pssb.201600723