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Abstract—The on-state resistance (RON) instability of 
standard complementary metal-oxide-semiconductor 
(CMOS) antifuse cells has been observed for the first 
time by using acceleration factors: stress current and 
ambient temperature. If the program current is 
limited, the RON increases as time passes during read 
operation.    
 
Index Terms—Antifuse, reliability, on-state resistance 
instability   

I. INTRODUCTION 

Among various kinds of one-time programmable (OTP) 
memory technologies, the standard complementary metal-
oxide-semiconductor (CMOS) antifuse cell based on 
conventional polysilicon-gate with silicon dioxide gate 
insulator has been regarded as one of the most promising 
technologies. It is usually used for the redundancy 
memory of dynamic random access memory (DRAM) or 
static RAM (SRAM) [1-4]. This antifuse cell is cost-
effective because its fabrication process is compatible 
with CMOS baseline process. 

In terms of the reliability of an antifuse cell, the on-
state resistance (RON) instability of the programmed cell 
during read operation is an important issue. The RON 
instability means the time-dependent resistance increase 
of the conductive filament (CF) in the programmed 

antifuse cell during read operation. It can induce the read 
disturb: the RON increase of programmed antifuse cells to 
an off-state resistance (ROFF) level during read operation. 
In the case of metal-insulator-metal (MIM) antifuse cells, 
read disturb problems have already been reported [5, 6]. 
On the other hand, in the case of standard CMOS 
antifuse cells, few research results on read disturb 
problems have been reported yet. It is because the 
thermal hard breakdown (HBD) of a silicon dioxide film 
with Joule heating effects does not recover. 

If the stress current is limited during the breakdown 
process of an ultra-thin silicon dioxide film, the post-
HBD leakage conductance is similar to that of a quantum 
point contact. It means that a CF is regarded as an atom-
sized constriction, which is explained by the quantum 
point contact HBD (QPC-HBD) model [7]. The anti-
breakdown has been reported which means that the 
reversibility of the QPC-HBD path in an ultra-thin 
silicon dioxide film [8, 9]. The anti-breakdown is 
induced by the rearrangement of defects which form CFs. 
The rearrangement process is driven by electron wind 
force [8, 9]. Because the program current of an on-chip 
antifuse cell is limited, the CFs of programmed antifuse 
cells can be formed by the QPC-HBD. Thus, the RON of 
programmed antifuse cells may vary during read 
operation: RON instability. 

In this paper, It has been observed that the RON 
instability of programmed standard CMOS antifuse cells 
by using stress current and ambient temperature as 
acceleration factors for the first time. Also, the data 
retention of programmed standard CMOS antifuse cells 
has been discussed. 
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II. MEASUREMENT CONDITION 

The RON instability during read operation is generally 
negligible as long as stress current is low. Thus, in order 
to observe the RON instability within short measurement 
time, acceleration factors should be introduced. In order 
to accelerate the RON instability, the electron wind force 
needs to be strengthened. It is well-known that the 
intensity of the electron wind force is related to the 
current and temperature [10]. Thus, it is predicted that 
the RON instability will be accelerated when the antifuse 
cells are exposed to high stress current and temperature. 

For experiments, we have used typical single antifuse 
test patterns based on n-channel MOSFET in sub 30 nm 
technology node for DRAM. As shown in Fig. 1(a) 
antifuse cells are programmed at room temperature by 6-
V gate voltage with program current fixed at 1 mA. This 
program condition has been selected in order to form 
QPC-HBD paths. Subsequently, in order to observe the 
RON instability, the programmed cells are exposed to 
constant current stress as shown in Fig. 1(b). The stress 
current should be lower than the program compliance 
current in order to prevent the phase change of CFs by 
Joule heating at high temperature. The accelerated stress 
conditions are summarized in Table 1. 

III. MEASUREMENT AND DISCUSSION 

The RON instability consists of three regions as shown 
in Fig. 2. The first region is defined as “soft RON 
instability region” where RON increases slightly. The 
second region is defined as “hard RON instability region” 
where RON increases abruptly. The last region is defined 
as “RON recovery region” where the RON increased in the 
hard RON instability region is recovered to its initial value. 

Fig. 3 shows the average RON variation (ΔRON(t) ≡ 
RON(t) - RON(0)) in the soft RON instability region of 
several samples measured under the three acceleration 
conditions as shown in Table 1. Fig. 3 clearly shows the 
two acceleration factors of RON instability: stress current 
and ambient temperature. In the first place, comparing 
the acceleration condition 1 with 2, Ron instability is 
accelerated as stress current increases. The RON in the 

 

Fig. 1. (a) Program condition, (b) read disturb measurement.  
 

Table 1. Acceleration conditions for read disturb measurement 
 Stress current Ambient temperature 

Acceleration 
condition 1 500 μA 300°C 

Acceleration 
condition 2 800 μA 300°C 

Acceleration 
condition 3 800 μA 250°C 

 

 

 

Fig. 2. Three regions of the RON instability: soft RON instability, 
hard RON instability and RON recovery region. 

 

 

Fig. 3. ΔRON(t) in soft RON instability region under each 
acceleration condition. 
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acceleration condition 2 increases more rapidly than that 
in the acceleration condition 1. RON increases ~4.4 mΩ/s 
under the acceleration condition 2, whereas RON 
increases ~1.1 mΩ/s under the acceleration condition 1. 
In the same manner, the comparison between the 
acceleration condition 2 with 3 shows that high 
temperature accelerates RON instability. The RON in the 
acceleration condition 2 increases more rapidly than that 
in the acceleration condition 3. RON increases ~4.4 mΩ/s 
under the acceleration condition 2, whereas RON 
increases ~1.0 mΩ/s under the acceleration condition 3. 

Some of the measured antifuse cells exhibit hard RON 
instability which is similar to anti-breakdown as shown 
in Fig. 4. It is because the rearrangement of defects by 
electro-migration effects eventually makes CFs narrower 
or disconnected. These unusual cells also exhibit the 
same trend as in Fig. 3 ahead of the hard RON instability 
region. It means that the occurrence of the hard RON 
instability is determined randomly depending on the 
atomic topology of CFs. Hard RON instability events 
occur earlier, more frequently and more rapidly in the 
acceleration condition 2 than in acceleration condition 1. 
Also, no hard RON instability event has been observed in 
the acceleration condition 3. Thus, it is expected that 
hard RON instability will show the same trend as soft RON 
instability. 

However, in our experiment, RON does not increase to 
the ROFF level which is larger than several MΩ, as shown 
in Fig. 4, even in the case of hard RON instability. If 
multiple hard RON instability events occur repeatedly, 
read disturb may occur. However, RON is recovered to its 

initial value before another hard RON instability event 
occurs because the high electric field applied across the 
unoccupied CF spots generates new defects. This RON 
recovery occurs hundreds of seconds after hard RON 
instability event. However, it takes more than 10,000 s to 
induce the hard RON instability. Thus, it is not probable 
that RON instability occurs repeatedly without RON 
recovery. Therefore, in spite of the hard RON instability, it 
is predicted that read disturb will not occur, even at 
300 °C. Obviously, CFs in the programmed antifuse cell 
have been guaranteed for ten years at room temperature. 

III. SUMMARY 

The RON instability of the programmed CMOS antifuse 
cells has been investigated by using the two acceleration 
factors: stress current and ambient temperature. Based on 
experimental results, it has been found that the RON 
instability depends on the stress current and ambient 
temperature for the first time. Then, it has been 
confirmed that read disturb will not occur in the case of 
CMOS antifuse cells. 
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