참고문헌
- Aksoy, C.O., Ozacar, V. and Kantarci, O. (2010), "An example of estimating rock mass deformation around an underground opening using numerical modeling", Int. J. Rock Mech. Min., 47(2), 272-278. https://doi.org/10.1016/j.ijrmms.2009.12.001
- Attoh-Okine, N.O., Cooger, K. and Mensah, S. (2009), "Multivariate adaptive regression spline (MARS) and hinged hyper planes (HHP) for doweled pavement performance modeling", Constr. Build. Mater., 23(9), 3020-3023. https://doi.org/10.1016/j.conbuildmat.2009.04.010
- Barton, N., Loset, F., Lien, R. and Lunde, J. (1980), "Application of Q system in design decisions concerning dimensions and appropriate support for underground installations", Proceedings of the International Conference on Subsurface Space, Rockstore, Stockholm, June, Volume 2, pp. 553-561.
- Basarir, H. (2006), "Engineering geological studies and tunnel support design at Sulakyurt dam site, Turkey", Eng. Geol., 86(4), 225-237. https://doi.org/10.1016/j.enggeo.2006.05.003
- Bieniawski, Z.T. (1978), "Determining rock mass deformability: experience from case histories", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15(5), 237-247. https://doi.org/10.1016/0148-9062(78)90956-7
- Bieniawski, Z.T. (1989), Engineering Rock Mass Classifications, John Wiley and Sons, New York, USA.
- Cornell, C.A. (1969), "A probability-based structural code", ACI, 66(12), 974-985.
- Friedman, J.H. (1991), "Multivariate adaptive regression splines", Ann. Stat., 19(1), 1-141. https://doi.org/10.1214/aos/1176347963
- Gandomi, A.H. and Roke, D.A. (2013), "Intelligent formulation of structural engineering systems", 7th M.I.T. Conference on Computational Fluid and Solid Mechanics-Focus: Multiphysics & Multiscale, Massachusetts Institute of Technology, Cambridge, MA, USA, June.
- Goh, A.T.C., Xuan, F. and Zhang, W.G. (2013), "Reliability assessment of diaphragm wall deflections in soft clays", Foundation Engineering in the Face of Uncertainty (GSP 229) ASCE, 487-496.
- Goh, A.T.C. and Zhang, W.G. (2012), "Reliability assessment of stability of underground rock caverns", Int. J. Rock Mech. Min., 55, 157-163.
- Goh, A.T.C. and Zhang, W.G. (2014), "An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines", Eng. Geol., 170, 1-10. https://doi.org/10.1016/j.enggeo.2013.12.003
- Hasofer, A.M. and Lind, N. (1974), "An exact & invariant first-order reliability format", J. Eng. Mech. ASCE, 100(1), 111-121.
- Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of Statistical Learning: Data Mining, Inference and Prediction, (2nd Ed.), Springer.
- Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", J. Rock Mech. Min., 34(8), 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X
- Itasca Consulting Group (2005), FLAC-3D, User's Guide: Fast-Lagrangian Analysis of Continua in 3 Dimensions-Version 3.0, Minneapolis, MN, USA.
- Jekabsons, G. (2010), VariReg: A Software Tool for Regression Modeling using Various Modeling Methods, Riga Technical University, Latvia, URL: http://www.cs.rtu.lv/jekabsons/.
- Lashkari, A. (2012), "Prediction of the shaft resistance of non-displacement piles in sand", Int. J. Numer. Anal. Met., 38(7), 904-931.
- Low, B.K. (1996), "Practical probabilistic approach using spreadsheet", Uncertainty in the Geologic Environment (GSP 58) ASCE, Reston, VA, USA, pp. 1284-1302.
- Low, B.K. and Tang, W.H. (2004), "Reliability analysis using object-oriented constrained optimization", Struct. Saf., 26(1), 69-89 https://doi.org/10.1016/S0167-4730(03)00023-7
- Low, B.K. and Tang, W.H. (2007), "Efficient spreadsheet algorithm for first-order reliability method", J. Eng. Mech. ASCE, 133(12), 1378-1387. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:12(1378)
- Meguid, M.A. and Rowe, R.K. (2006), "Stability and D-shaped tunnels in a Mohr-Coulomb material under anisotropic stress conditions", Can. Geotech. J., 43(3), 273-281. https://doi.org/10.1139/t06-004
- Mirzahosseinia, M., Aghaeifarb, A., Alavic, A., Gandomic, A. and Seyednour, R. (2011), "Permanent deformation analysis of asphalt mixtures using soft computing techniques", Expert Syst. Appl., 38(5), 6081-6100. https://doi.org/10.1016/j.eswa.2010.11.002
- Palmstrom, A. (2000), "On classification systems", Proceedings GeoEng2000, Melbourne, Vic, Australia, November.
- Samui, P. (2011), "Determination of ultimate capacity of driven piles in cohesionless soil: a multivariate adaptive regression spline approach", Int. J. Numer. Anal. Met., 36(11), 1434-1439.
- Samui, P. and Karup, P. (2011), "Multivariate adaptive regression spline and least square support vector machine for prediction of undrained shear strength of clay", IJAMC, 3(2), 33-42.
- Serafim, J.L. and Pereira, J.P. (1983), "Considerations of the geomechanics classification of Bieniawski", Proceedings of the International Symposium on Engineering Geology and Underground Construction, Lisbon, Portugal, Volume 1, pp. 1133-1142.
- Tugrul, A. (1998), "The application of rock mass classification systems to underground excavation in weak lime stone, Ataturk dam", Turk. Eng. Geol., 50(3-4), 337-345. https://doi.org/10.1016/S0013-7952(98)00034-9
- Zarnani, S., El-Emam, M. and Bathurst, R.J. (2011), "Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests", Geomech. Eng., Int. J., 3(4), 291-321. https://doi.org/10.12989/gae.2011.3.4.291
- Zhang, W.G. and Goh, A.T.C. (2012), "Reliability assessment on ultimate and serviceability limit states and determination of critical factor of safety for underground rock caverns", Tunn. Undergr. Sp. Tech., 32, 221-230. https://doi.org/10.1016/j.tust.2012.07.002
- Zhang, W.G. and Goh, A.T.C. (2013), "Multivariate adaptive regression splines for analysis of geotechnical engineering systems", Comput. Geotech., 48, 82-95. https://doi.org/10.1016/j.compgeo.2012.09.016
피인용 문헌
- Estimating uncertainty in limit state capacities for reinforced concrete frame structures through pushover analysis vol.10, pp.1, 2016, https://doi.org/10.12989/eas.2016.10.1.141
- Multivariate adaptive regression splines and neural network models for prediction of pile drivability vol.7, pp.1, 2016, https://doi.org/10.1016/j.gsf.2014.10.003
- Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines vol.188, 2015, https://doi.org/10.1016/j.enggeo.2015.01.009
- Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.269
- Random field characterization of uniaxial compressive strength and elastic modulus for intact rocks 2018, https://doi.org/10.1016/j.gsf.2017.11.014
- Nonlinear structural modeling using multivariate adaptive regression splines vol.16, pp.4, 2015, https://doi.org/10.12989/cac.2015.16.4.569
- Multivariate adaptive regression splines for inverse analysis of soil and wall properties in braced excavation vol.64, 2017, https://doi.org/10.1016/j.tust.2017.01.009
- Design and construction of shaft for rock caverns in Singapore vol.13, pp.1, 2014, https://doi.org/10.12989/gae.2017.13.1.173
- MARS inverse analysis of soil and wall properties for braced excavations in clays vol.16, pp.6, 2014, https://doi.org/10.12989/gae.2018.16.6.577
- An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils vol.21, pp.6, 2014, https://doi.org/10.12989/gae.2020.21.6.583
- Prediction of the tunnel displacement induced by laterally adjacent excavations using multivariate adaptive regression splines vol.15, pp.8, 2014, https://doi.org/10.1007/s11440-020-00916-w
- Deterministic and probabilistic analysis of tunnel face stability using support vector machine vol.25, pp.1, 2021, https://doi.org/10.12989/gae.2021.25.1.017
- Studying the deformation and stability of rock mass surrounding the power station caverns using NA and GEP models vol.79, pp.1, 2014, https://doi.org/10.12989/sem.2021.79.1.035