DOI QR코드

DOI QR Code

정지 물체를 고려한 적응적 배경생성 알고리즘

An Adaptive Background Formation Algorithm Considering Stationary Object

  • 정종면 (목포해양대학교 해양컴퓨터공학과)
  • Jeong, Jongmyeon (Dept. of Computer Engineering, Mokpo National Maritime University)
  • 투고 : 2014.08.12
  • 심사 : 2014.10.15
  • 발행 : 2014.10.31

초록

배경과 현재 프레임 영상간의 차영상을 이용하여 이동 물체를 탐지하는 방법은 비디오 감시 시스템에서 가장 보편적인 방법 중 하나이지만 신뢰할 수 있는 배경의 생성은 여전히 쉽지 않은 문제이다. 본 논문에서는 정지 물체를 고려한 적응적 배경 생성 기법을 제안한다. 연속적으로 입력되는 영상들의 산술 평균을 이용하여 초기 배경을 생성한다. 배경과 현재 영상간의 차영상을 구하여 물체를 탐지한 다음, 탐지된 물체가 일정시간이상 계속 정지해 있는 경우에는 그 물체를 정지 물체로 간주하고 정지 물체 영역을 배경으로 갱신한다. 한편, 이동 물체인 경우에는 배경 갱신에서 현재 프레임을 배제함으로써 지속적으로 물체를 탐지할 수 있도록 한다. 제안된 방법은 점진적인 조명의 변화, 느리게 이동하는 물체, 정지 물체 등이 존재하는 동영상에서도 적응적으로 배경을 생성할 수 있으며 이는 실험을 통해 확인되었다.

In the intelligent video surveillance system, moving objects generally are detected by calculating difference between background and input image. However formation of reliable background is known to be still challenging task because it is hard to cope with the complicated background. In this paper we propose an adaptive background formation algorithm considering stationary object. At first, the initial background is formed by averaging the initial N frames. Object detection is performed by comparing the current input image and background. If the object is at a stop for a long time, we consider the object as stationary object and background is replaced with the stationary object. On the other hand, if the object is a moving object, the pixels in the object are not reflected for background modification. Because the proposed algorithm considers gradual illuminance change, slow moving object and stationary object, we can form background adaptively and robustly which has been shown by experimental results.

키워드

참고문헌

  1. R. Collins, A. Lipton and T. Kanade "Introduction to the special section on video surveillance", IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp.745-746 2000. https://doi.org/10.1109/TPAMI.2000.868676
  2. B. Lee, M. Hedley, "Background estimation for video surveillance", IVCNZ, pp. 315-320, 2002.
  3. C. Staffer, W. E. L. Grimson, "Adaptive background mixture models for real-time tracking", International Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 23-25, 1999.
  4. Radke RJ, Andra S, Al-Kofahi O, Roysam B., "Image Change Detection Algorithms: A systematic survey," IEEE Trans on Image processing, Vol. 14(3), pp. 294-307, Mar. 2005. https://doi.org/10.1109/TIP.2004.838698
  5. P. Kumar, S. Ranganath, and W. Huang, "Queue based fast background modelling and fast hysteresis thresholding for better foreground segmentation," The 2003 Joint Conferenece of the Fourth ICICS and PCM, Vol. 2, pp. 15-18, 2003.
  6. I. Haritaoglu, D. Harwood, and L. Davis, "W4: Real-time surveillance of people and their activities," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.22, pp. 809-830, Aug. 2000. https://doi.org/10.1109/34.868683
  7. Z. Tang and Z. Miao, "Fast background subtraction and shadow elimination using improved gaussian mixture model," IEEE International Workshop on Haptic Audio Visual Environments and their Applications, pp. 38-41, Oct. 2007.
  8. D. Lee, "Effective gaussian mixture learning for video background subtraction," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.27, No.5, pp.827-832, May 2005. https://doi.org/10.1109/TPAMI.2005.102
  9. A. Shimada, T. Tanaka, D. Arita and R. Taniguchi, "Spatial-temporal integration of adaptive gaussian mixture background models," Proc. of FCV 2008, pp142-147, Jan. 2008.
  10. J. Lee and O. Chae, "A study of background edge generation for moving object detection under moving camera," Journal of Korean Society of Computer and Information, Vol.6, No.44, p.151-156, Dec. 2006.
  11. H. Kim, Y. Lee, T. Song, B. Ku and H. Ko, "Improved block-based background modeling using adaptive parameter estimation", Journal of Korean Society of Computer and Information, Vol.16, No.4, pp.73-82, Apr. 2011.
  12. T. Hosaka, T. Kobayashi, and N. Otsu, "Object detection using background subtraction and foreground motion estimation," IPSJ Trans. on Computer Vision and Applications, Vol.3, pp. 9-20, Mar. 2011. https://doi.org/10.2197/ipsjtcva.3.9
  13. T. Bouwmans, "Traditional and recent approaches in background modeling for foreground detection: An overview," Computer Science Review, II-I2, pp. 31-66, 2014.