References
- Abu-Hilal, M. and Zibden, H.S. (2000), "Vibration analysis of beams with general boundary conditions traversed by a moving force", J. Sound Vib., 229(2), 377-388. https://doi.org/10.1006/jsvi.1999.2491
- Amiri, S.N. and Onyango, M. (2010), "Simply supported beam response on elastic foundation carrying repeated rolling concentrated loads", J. Eng. Sci. Technol., 5(1) 52-66.
- Awodola, T.O. (2007), "Variable velocity influence on the vibration of simply supported Bernoulli-Euler beam under exponentially varying magnitude moving load", J. Math. Stat., 3(4), 228-232. https://doi.org/10.3844/jmssp.2007.228.232
- Azam, E., Mofid, M. and Khoraskani, R.A. (2013), "Dynamic response of Timoshenko beam under moving mass", Scientia Iranica, 20 (1), 50-56.
- Chonan, S. (1975), "The elastically supported Timoshenko beam subjected to an axial force and a moving load", Int. J. Mech. Sci., 17(9), 573-581. https://doi.org/10.1016/0020-7403(75)90022-3
- Chonan, S. (1978), "Moving harmonic load on an elastically supported Timoshenko beam", J. Appl. Math. Mech., 58 (1), 9-15.
- Clebsch, A. (1883), Theorie de l'elasticite des corps solides, Traduite par Barre de Saint-Venant et A. Flamant, Dunodm, Paris.
- Ding, H., Chen, L.Q. and Yang, S.P. (2012), "Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load", J. Sound Vib., 331, 2426-2442. https://doi.org/10.1016/j.jsv.2011.12.036
- Esmailzadeh, E. and Jalili, N. (2003), "Vehicle-passenger-structure interaction of uniform bridges traversed by moving vehicles", J. Sound Vib., 260, 611-635. https://doi.org/10.1016/S0022-460X(02)00960-4
- Friba, L. (1999), Vibration of solid and structures under moving loads, Thomas Telford, London.
- Hilal, M.A. and Mohsen, M. (2000), "Vibration of beams with general boundary conditions due to a moving harmonic load", J. Sound Vib., 232(4), 703-717. https://doi.org/10.1006/jsvi.1999.2771
- Hillerborg, A. (1951), Dynamic influence of smoothly running loads of simple supported girders, Kungliga Tekniska Hogskolan, Stockholm.
- Hryniewicz, Z. (2011), "Dynamics of Rayleigh beam on nonlinear foundation due to moving load using Adomian decomposition and coiflet expansion", Soil Dyn. Earthq. Eng., 31, 1123-1131. https://doi.org/10.1016/j.soildyn.2011.03.013
- Inglis, C.E. (1934), A mathematical treatise on vibration in railway bridges, Cambridge University Press, Cambridge.
- Javanmard, M., Bayat, M. and Ardakani, A. (2013), "Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation", Steel Compos. Struct., 15(4), 439-449. https://doi.org/10.12989/scs.2013.15.4.439
- Karami-Khorramabadi, M. and Nezamabadi, A.R. (2012), "Dynamic analysis of infinite composite beam subjected to a moving load located on a viscoelastic foundation based on the third order shear deformation theory", J. Basic Appl. Sci. Res., 2(8), 8378-8381.
- Kerr, A.D. (1972), "The continuously supported rail subjected to an axial force and a moving load", Int. J. Mech. Sci., 14(1), 71-78. https://doi.org/10.1016/0020-7403(72)90007-0
- Kien, N.D. and Ha, L.T. (2011), "Dynamic characteristics of elastically supported beam subjected to a compressive axial force and a moving load", Vietnam J. Mech., 33(2), 113-131.
- Krilov, A.N. (1905), "Uber die erzwungenen schwingungen von gleichformigen elastischen staben", Mathematishce Annalen, 61, 211. https://doi.org/10.1007/BF01457563
- Lin, H.P. and Chang, S.C. (2006), "Forced responses of cracked contilever beam subjected to a concentrated moving load", Int. J. Mech. Sci., 48(12), 1456-1463. https://doi.org/10.1016/j.ijmecsci.2006.06.014
- Lin, Y.H. and Trethewey, M.W. (1990), "Finite element analysis of elastic beams subjected to moving dynamic loads", J. Sound Vib., 136(2), 323-342. https://doi.org/10.1016/0022-460X(90)90860-3
- Lin, Y.H. and Trethewey, M.W. (1993), "Active vibration suppression of beam structures subjected to moving loads: a feasibility study using finite elements", J. Sound Vib., 166 (3), 383-395. https://doi.org/10.1006/jsvi.1993.1302
- Liu, Z., Yin, Y., Wang, F., Zhao, Y. and Cai, L. (2013), "Study on modified differential transform method for free vibration analysis of uniform Euler-Bernoulli beam", Struct. Eng. Mech., 48 (5) 697-709. https://doi.org/10.12989/sem.2013.48.5.697
- Mehril, B., Davar, A. and Rahmani, O. (2009), "Dynamic Green function solution of beams under a moving load with different boundary conditions", J. Sharif Univ. of Technol., Transaction B: Mech.Eng., 16(3), 273-279.
- Michaltos, G.T. (2002), "Dynamic behaviour of a single-span beam subjected to loads moving with variable speeds", J. Sound Vib., 258(2), 359-372. https://doi.org/10.1006/jsvi.2002.5141
- Michaltos, G.T., Sophianopulos, D. and Kounadis, A.N. (1996), "The effect of a moving mass and other parameters on the dynamic response of a simply supported beam", J. Sound Vib., 191(3), 357-362. https://doi.org/10.1006/jsvi.1996.0127
- Nikkhoo, A. and Amankhani, M. (2012), "Dynamic behaviour of functionally graded beams traversed by a moving random load", Indian J. Sci. Technol., 5(12), 3727-3731.
- Omolofe, B. (2013), "Deflection profile analysis of beams on two-parameter elastic subgrade", Latin American J. Solids Struct., 10, 263-282. https://doi.org/10.1590/S1679-78252013000200003
- Petrov, N.P. (1903), "Influence of the translational velocity of the wheel on the rail stress", Reports of the Imperial Russian Technological Society, 37(2), 27-115 (in Russian).
- Piccardo, G. and Tubino, F. (2012), "Dynamic response of Euler-Bernoulli beams to resonant harmonic moving loads", Struct. Eng. Mech., 44 (5) 681-704. https://doi.org/10.12989/sem.2012.44.5.681
- Prager, W. and Save, M. (1963), "Minimum-weight design of beams subjected to fixed and moving loads". J. Mech. Physics Solids, 11, 255-267. https://doi.org/10.1016/0022-5096(63)90012-7
- Samani, F. and Pellicano, F. (2009), "Vibration reduction on beams subjected to moving loads using linear and nonlinear dynamic absorbers", J. Sound Vib., 325, 742-754. https://doi.org/10.1016/j.jsv.2009.04.011
- Soares, R.M., del Prado, Z.J.G.N. and Goncales, P.B. (2010), "On the vibration of beams using a moving absorber and subjected to moving loads", Mecanica Comput., (29) 1829-1840.
- Stokes, G.G. (1849), "Discussion of a differential equation relating to the breaking of railway bridges", Transactions of the Cambridge Philosophical Society, 85(5), 707-735.
- Sun, L. and Luo, F. (2008), "Steady-state dynamic response of a Bernoulli-Euler beam on a viscoelastic foundation subjected to a platoon of moving dynamic load", J. Vib. Acoust., 130, 051002-1 - 051002-19. https://doi.org/10.1115/1.2948376
- Thambiratnam, D. and Zhuge, Y. (1996), "Dynamic analysis of beams on an elastic foundation subjected to moving loads", J. Sound Vib., 198 (2), 149-169. https://doi.org/10.1006/jsvi.1996.0562
- Timoshenko, S.P. (1922), "On the forced vibrations of bridges", Philosophical Magazine Series 6, 43(257), 1018-1019. https://doi.org/10.1080/14786442208633953
- Timoshenko , S.P. (1972), Theory of elasticity, Naukova Dumka, Kiev (In Russian)
- Willis, R. (1849), Report of the commissioners appointed to inquire into the application of iron to railway structures, William Clowes & Sons, London.
- Wu, J.J. (2005), "Dynamic analysis of inclined beam due to moving load", J. Sound Vib., 288(1-2), 107-131. https://doi.org/10.1016/j.jsv.2004.12.020
- Xia, H., Zhang, N. and Guo, W.W. (2006), "Analysis of resonance mechanism and conditions of train-bridge system", J. Sound Vib., 297, 810-822. https://doi.org/10.1016/j.jsv.2006.04.022
- Yang, Y.B., Yau, J.D. and Hsu, L.C. (1997), "Vibration of simple beams due to trains moving at high speeds", Eng. Struct., 19(11), 936-944. https://doi.org/10.1016/S0141-0296(97)00001-1
- Yau, J.D. (2004), "Vibration of simply supported compound beams to moving loads", J. Marine Sci. Technol., 12(4), 319-328.
- Zehsaz, M., Sadeghi, M.H. and Asl, A.Z. (2009), "Dynamic Response of railway under a moving load", J. Appl. Sci., 9(8), 1474-1481. https://doi.org/10.3923/jas.2009.1474.1481
- Zheng, D.Y., Cheung, Y.K., Au, F.T.K. and Cheng, Y.S. (1998), "Vibration of multi-span non-uniform beams under moving loads by using modified beam vibration functions", J. Sound Vib., 212(3), 455-467. https://doi.org/10.1006/jsvi.1997.1435
- Zibdeh, H.S. and Rackwitz, R. (1995), "Response moments of an elastic beam subjected to Poissonian moving loads", J. Sound Vib., 188 (4), 479-495. https://doi.org/10.1006/jsvi.1995.0606
Cited by
- Alternative approach for the derivation of an eigenvalue problem for a Bernoulli-Euler beam carrying a single in-span elastic rod with a tip-mounted mass vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1105
- Frequency analysis of beams with multiple dampers via exact generalized functions vol.5, pp.2, 2016, https://doi.org/10.12989/csm.2016.5.2.157
- Resonance of a rectangular plate influenced by sequential moving masses vol.5, pp.1, 2016, https://doi.org/10.12989/csm.2016.5.1.087
- Modeling of the friction in the tool-workpiece system in diamond burnishing process vol.4, pp.4, 2015, https://doi.org/10.12989/csm.2015.4.4.279
- Investigation of dynamic response of "bridge girder-telpher-load" crane system due to telpher motion vol.7, pp.4, 2014, https://doi.org/10.12989/csm.2018.7.4.485