DOI QR코드

DOI QR Code

Noise Properties for Filtered Back Projection in CT Reconstruction

필터보정역투영 CT 영상재구성방법에서 잡음 특성

  • Chon, Kwonsu (Department of Radiological Science, The Graduate School, Catholic University of Daegu)
  • 천권수 (대구가톨릭대학교 방사선학과)
  • Received : 2014.09.23
  • Accepted : 2014.10.25
  • Published : 2014.10.30

Abstract

The filtered back projection in the image reconstruction algorithms for the clinic computed tomography system has been widely used. Noise of the reconstructed image was examined under the input noise for parallel and fan beam geometries. The reconstruction images of $512{\times}512$ size were carried out under 360 and 720 projection by the Visual C++ for parallel beam and fan beam, respectively, and those agreed with the original Shepp-Logan head phantom very much. Noise was generated because of intrinsic restriction (finite number of projections) for the image reconstruction algorithm, filtered back projection, when no input noise was applied. Because the result noise was rapidly increased under 0.5% input noise ratio, technologies for reducing noise in CT system and image processing is important.

전산화단층촬영장치의 영상재구성방법으로 필터보정역투영법이 광범위하게 사용되고 있다. 평행빔과 부채살빔의 재구성에 사용되는 투영에 잡음이 포함되었을 때 재구성 된 영상의 잡음을 살펴보았다. 평행빔과 부채살 구조에서 각각 360개, 720개의 투영으로 $512{\times}512$ 크기로 Visual C++을 이용하여 영상재구성하였고, 원본 Shepp-Logan 두부 모형을 매우 잘 복원한다는 것을 확인하였다. 필터보정역투영법의 현실적인 접근(유한한 투영 개수)으로 인해 입력 잡음이 없어도 영상재구성 과정에서 잡음이 발생하였다. 입력 잡음비 0.5% 이하에서 잡음이 빠르게 증가하기 때문에 CT 장치의 잡음 제거 기술 및 영상처리 기법의 개발이 필요할 것이다.

Keywords

References

  1. G.N. Hounsfield, "Computerized transverse axial scanning (tomography): I. Description of system," Br. J. Radiol. Vol. 46, pp1016-1022, 1973. https://doi.org/10.1259/0007-1285-46-552-1016
  2. B.S.B. Sun W, R.K. Leach, "An overview of industrial X-ray computed tomography," NPL Report ENG 32, 2012.
  3. W.A. Kalender, "X-ray computed tomography," Phy. Med. Biol. Vol. 51, ppR29-R43, 2006. https://doi.org/10.1088/0031-9155/51/13/R03
  4. Ludwig D, "The Radon transform on Euclidean space," Comm. Pure and Appl. Math., Vol.19, pp49-81, 1966.
  5. J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances, SPIE Press, Bellingham, Washington USA, 2003.
  6. L.W. Goldman, "Principles of CT and CT Technology," Journal of Nuclear Medicine Technology, Vol. 35 No. 3, pp115-128, 2007. https://doi.org/10.2967/jnmt.107.042978
  7. L.A. Shepp, B.F. Logan, "The Fourier Reconstruction of a Head Section," IEEE Trans. Nucl. Sci., Vol. 21, pp21-43, 1974.
  8. A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, New York, 1988.
  9. G.N. Ramachandran, A.V. Lakhshminarayanan, "Three-dimensional reconstruction from radiographs and electron micrographs: Application of convolution instead of Fourier transforms,' Proc.Natl.Sci. Acad. USA, Vol.68, pp2236-2240, 1971. https://doi.org/10.1073/pnas.68.9.2236
  10. G.E.P. Box, M.E. Mull, "A note on the generation of random normal deviates," Annals Math. Stat, Vol. 29, pp610-611, 1958. https://doi.org/10.1214/aoms/1177706645
  11. B. Kang, "Quantitative Evaluation of CT Artifact Elimination with various Cut-off Frequency of Hann Filter," Journal of the Korea Society of Radiology, Vol. 2, No. 3, pp5-9, 2008.
  12. L.A. Feldkamp, L.C. Davis, J.W. Kress, "Practical cone-beam algorithm," J. Opt. Soc. Am., Vol 1, No. 6, pp612-619, 1984. https://doi.org/10.1364/JOSAA.1.000612

Cited by

  1. Image Quality Improvement in Computed Tomography by Using Anisotropic 2-Dimensional Diffusion Based Filter vol.10, pp.1, 2016, https://doi.org/10.7742/jksr.2016.10.1.45
  2. 전산화단층촬영에서 관전압과 관전류, 통계적 반복재구성법에 따른 화질과 피폭선량 vol.40, pp.3, 2014, https://doi.org/10.17946/jrst.2017.40.3.05
  3. Back-Projection을 활용한 홍삼 내부 측정 시스템 vol.7, pp.10, 2018, https://doi.org/10.3745/ktsde.2018.7.10.377